Objectives of this Grand Challenge include the active involvement of the relevant observational communities in establishing benchmark data sets, and of the corresponding modelling communities in undertaking detailed evaluations and analyses. Outcomes are peer-reviewed, community-led papers that summarize the state of knowledge and identify areas in which confident statements can be made, as well as those for which major uncertainties remain. Such articles can: 1) draw attention to knowledge gaps, providing guidance for national and international funding opportunities, and 2) consolidate current understanding and develop improved modelling capabilities supporting climate change projections underpinning the IPCC's and other assessment reports, and thereby the global policy-development arena.

The following publications have been produced wholly or partially by members of this Grand Challenge, and/or exhibit strong links to this Grand Challenge's activities:

Related to ISMIP6:

Goelzer, H., et al.2018: Design and results of the ice sheet model initialization experiments initMIP-Greenland: an ISMIP6 inter-comparison, The Cryosphere, doi:10.5194/tc-12-1433-2018.

Nowicki, S. M. J., Payne, T., Larour, E., Seroussi, H., Goelzer, H., Lipscomb, W., Gregory, J., Abe-Ouchi, A., and Shepherd, A.: Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6, Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-105, 2016.

Related to MISOMIP:

Asay-Davis, X., S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.:  Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1). Geosci. Model Dev., 9, 2471-2497, 2016. https://doi.org/10.5194/gmd-9-2471-2016, 2016.

Asay-Davis, X., Adcroft, A., Dinniman, M., Galton-Fenzi, B.,Gladstone, R., Goldberg, D., Gwyther, D., Hallberg, R., Hattermann, T., Holland, P., Jordan, J., Jourdain, N., Kusahara, K., Marques, G., Nakayama, Y., Smith, R., Stern, A., and Zhou Q.: Melt rates in ocean models with ice-shelf cavities: results of thesecond Ice Shelf–Ocean Model Intercomparison Project (ISOMIP+).  Manuscript in prep., The Cryosphere, 2019.

Asay-Davis, X., R. Gladstone, and MISOMIP1 participants.  Results from the first Marine Ice-Sheet and Ocean Model Intercomparison Project.  Manuscript in prep., The Cryosphere, 2019.

Zhang, T., Price, S., Ju, L., Leng, W., Brondex, J., Durand, G., and Gagliardini, O.: A comparison of two Stokes ice sheet models applied to the Marine Ice Sheet Model Intercomparison Project for plan view models (MISMIP3d), The Cryosphere, 11, 179-190, doi:10.5194/tc-11-179-2017, 2017.

Asay-Davis, X. S., et al.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects. Geosci. Model Dev., 9, 2471-2497, 2016. https://doi.org/10.5194/gmd-9-2471-2016

Holland, D., and D. Holland, and the MISOMIP Team (2015), “On the rocks: The challenges of predicting sea level rise”, Eos, 96, . Published on 19 October 2015.

Related to ESM-SnowMIP:

Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., Hall, A., Rott, H., Brutel-Vuilmet, C., Kim H., Ménard, C. B., Mudryk, L., Thackeray, C., Wang, L., Arduini, G., Balsamo, G., Bartlett, P., Boike, J., Boone, A., Chéruy, F., Colin, J., Cuntz, M., Dai, Y., Decharme, B., Derry, J., Ducharne, A., Dutra, E., Fang, X., Fierz, C., Ghattas, J., Gusev, Y., Haverd, V., Kontu, A., Lafaysse, M., Law, R., Lawrence, D., Li, W., Marke, T., Marks, D., Nasonova, O., Nitta, T., Niwano, M., Pomeroy, J., Raleigh, M. S., Schaedler, G., Semenov, V., Smirnova, T., Stacke, T., Strasser, U., Svenson, S., Turkov, D., Wang, T., Wever, N., Yuan, H., and Zhou, W. : ESM-SnowMIP : Assessing models and quantifying snow-related climate feedbacks, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-153, in review.

Van den Hurk, B., Kim, H., Krinner, G., Seneviratne, S. I., Derksen, C., Oki, T., and 19 others: LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison Project – aims, setup and expected outcome, Geosci. Model Dev., 9, 2809-2832, doi:10.5194/gmd-9-2809-2016, 2016.

Related to GlacierMIP:

Slangen, A.B.A., Adloff, F., Jevrejeva, S. et al. Sea-Level Projections at Global and Regional Scales. Surv. Geophys. (2016). doi:10.1007/s10712-016-9374-2.

Related to the Sea Ice Modeling Intercomparison Project:
Notz, D., Jahn, A., Holland, M., Hunke, E., Massonnet, F., Stroeve, J., Tremblay, B., and Vancoppenolle, M.: The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations, Geosci. Model Dev., 9, 3427-3446, https://doi.org/10.5194/gmd-9-3427-2016, 2016.

Related to the Permafrost Carbon Network:

McGuire AD et al. (2018) The dependence of the evolution of carbon dynamics in the Northern Permafrost Region on the trajectory of climate change Proceedings of the National Academy of Sciences, 115, (15), 3882-3887 https://doi.org/10.1073/pnas.1719903115

Loranty MM et al. 2018 Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions Biogeosciences 15 5287–313. https://doi.org/10.5194/bg-15-5287-2018

Strauss J et al. (2017) Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability. Earth-Science Reviews. https://doi.org/10.1016/j.earscirev.2017.07.007

Xia J et al. (2017) Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. Journal of Geophysical Research: Biogeosciences, 122, 430-446. doi:10.1002/2016JG003384

Koven CD, Schuur EAG, Schädel C, Bohn TJ, Burke EJ, Chen G, Chen X, Ciais P, Grosse G, Harden JW, Hayes DJ, Hugelius G, Jafarov EE, Krinner G, Kuhry P, Lawrence DM, MacDougall AH, Marchenko SS, McGuire AD, Natali SM, Nicolsky DJ, Olefeldt D, Peng S, Romanovsky VE, Schaefer KM, Strauss J, Treat CC, Turetsky M (2015) A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 373. https://royalsocietypublishing.org/doi/full/10.1098/rsta.2014.0423

Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature, 520, 171-179. https://www.nature.com/articles/nature14338

McGuire et al. (2016) Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Global Biogeochemical Cycles. doi:10.1002/2016GB005405

Olefeldt et al. (2016) Circumpolar distribution and carbon storage of thermokarst landscapes. Nature Communications, 7, 13043. doi:10.1038/ncomms13043

Schädel et al. (2016) Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nature Clim. Change, 6, 950-953. doi:10.1038/nclimate3054

Wik et al. (2016) Climate-sensitive northern lakes and ponds are critical components of methane release. Nature Geosci, doi:10.1038/ngeo2578