Sub seasonal to seasonal land influence on the atmopshere

Pierre Gentine – Columbia University Julia Green, Ben Lintner, Adam Sobel, Jung-Eun Lee, Joe Berry, Usama Anber... How can we assess the role of the surface?

• Climate models:

define an experiment to isolate feedback (e.g. GLACE: impose soil moisture)

Land-atmosphere coupling strength (JJA), averaged across AGCMs

Koster, R. D. et al. (2004), Regions of strong coupling between soil moisture and
precipitation, *Science*, *305*(5687), 1138–1140.

Fig. 1. The land-atmosphere coupling strength diagnostic for boreal summer (the Ω difference, dimensionless, describing the impact of soil moisture on precipitation), averaged across the 12 models participating in GLACE. (**Insets**) Areally averaged coupling strengths for the 12 individual models over the outlined, representative hotspot regions. No signal appears in southern South America or at the southern tip of Africa.

How can we assess the role of the surface?

- Observations: limitations:
- Many variables are **not observed** (e.g. soil moisture, evapotranspiration...)
- Only statistical link: no causality

Case i: Bidirectional coupling Case ii: Unidirectional coupling $X \rightarrow Y$ Sugihara et al. 2012 Science Example 1: External forcing of non-coupled variables Example 2: Complex model $X \rightarrow Y$ Sugihara et al. 2012 Science $X \rightarrow Y$ Sugihara et al. 2012 Science

How can we assess the role of the surface?

• Observations:

We need:

- Surface fluxes observations (or estimates)
 Solution: Use novel Solar-Induced Fluorescence (SIF)
- Statistical method highlighting causality and not correlations

Solution: multivariate Granger causality

Solar Induced Fluorescence (SIF)

Solar-Induced Fluorescence (SIF)

During photosynthesis a plant absorbs energy through its chlorophyll

- % used for ecosystem gross primary production (GPP)
- % lost as heat
- % re-emitted (SIF: byproduct)

Relationship between GPP and SIF is ~ linear

Responds to stressors (water, light, T)

We can then relate surface flux to water stress

Guanter, L., et al. 2013

Solar Induced Fluorescence (SIF)

How can we constrain ET magnitude?

GPP (CO_2 uptake) is directly related to transpiration $T(H_2O release)$

GPP = wue T

(a) Stomata open

(b) Stomata closed

SIF is thus a good proxy for T (main flux)

Example: Tropical Climate

Except for Indonesia all tropical regions exhibit some seasonal cycle due to light/water limitations

Can we observe land-atmosphere interactions?

Statistical tool: Conditional Multivariate Granger **Causality** Based on Vector Autoregressive (VAR)

$$\boldsymbol{U}_t = \sum_{k=1}^p A_k \cdot \boldsymbol{U}_{t-k} + \boldsymbol{\varepsilon}_t$$

Computes added variance with each variable to define causality direction and strength

Seth et al. 2011

Causal biosphere-atmosphere feedbacks

- Consider Photosynthetically Active Radiation (PAR) (CERES), Precipitation (GPCP), Temperature (AIRS) and SIF (surface status)
- Monthly time scale remote sensing only

Green, Gentine et al. in revision

Causal biosphere-atmosphere feedbacks

• Feedback strength

Green, Gentine et al. in revision

Causal biosphere-atmosphere feedbacks

• Feedback strength: comparison with models

Land-atmosphere coupling strength (JJA), averaged across AGCMs

Fraction of Variance explained

Green, Gentine et al. in revision

CO₂ effect on land-atmosphere interactions

- So H₂O and CO₂ are coupled
- What happens under rising [CO₂]?
- In addition to radiative effect there is a surface carbon feedback

CO₂-H₂O coupling in land-atmosphere interactions

- Future [CO₂] will impact surface ET through changes in **WUE**
- Will feed back onto the atmosphere through LA coupling
- May reduce impact of heat wave through moisture buffer

CO₂-H₂O coupling in land-atmosphere interactions

May reduce impact of heat wave through moisture buffer

Lemordant et al. 2016, GRL

CO₂-H₂O coupling in land-atmosphere interactions

- Main control of this feedback: WUE
- Main coupling parameter between CO₂ and H₂O cycles

Lemordant et al. 2016, GRL

Observations:

define metrics to isolate feedback

Findell, K. L., P. Gentine, B. R. Lintner, and C. Kerr (2011), Nat Geosci