

Horizon 2020 European Union funding for Research & Innovation

APPLICATE

Advanced Prediction in Polar regions and beyond: Modelling, observing system design, and Linkages associated with a Changing Arctic climaTE

Thomas Jung (coordinator)

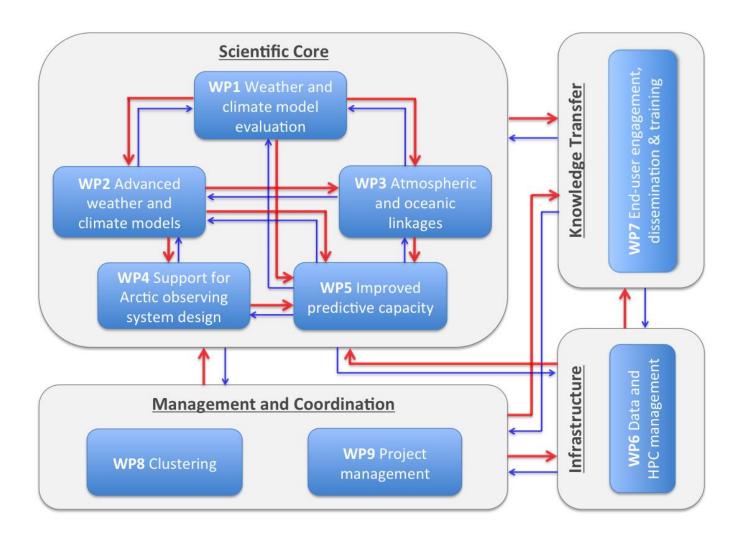
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Germany

16 partners from 9 countries

...and many international collaborators

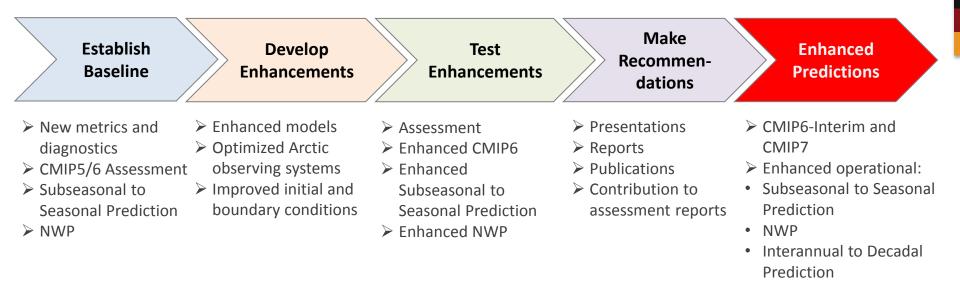
- ➢ Budget: € 8 Mio + separate Russian contribution
- Ist November 2016 to 31st October 2020 (4-years)

Develop enhanced predictive capacity for weather and climate in the Arctic and beyond, and determine the influence of Arctic climate change on Northern Hemisphere mid-latitudes, for the benefit of policy makers, businesses and society.



- Observationally constrain models using advanced metrics and diagnostics
- Develop enhanced weather and climate models
- Determine the impact of Arctic climate change on midlatitudes through atmospheric and oceanic linkages
- Contribute to the design of the future Arctic observing system
- Enhance the capacity to predict Northern Hemisphere weather and climate
- Develop APPLICATE in coordination with external partners
- Transfer the knowledge generated through APPLICATE to stakeholders including training of early career scientists

WP structure



- > Bring together the NWP and climate communities
- Involve experts on the Arctic and midlatitudes
- Engage operational centres for maximizing impact
- Effectively combine models and observations
- Exploit international cooperation (e.g. YOPP)

APPLICATE's strategy for delivering enhanced predictions

APPLICATE's strategy for enhancing our understanding of Arctic-midlatitude linkages

- Coordinated multi-model approach
- Employ coupled models
- > Additional testing with atmosphere-only models
- Study linkages also from a short-term prediction perspective
- Repeat with enhanced models

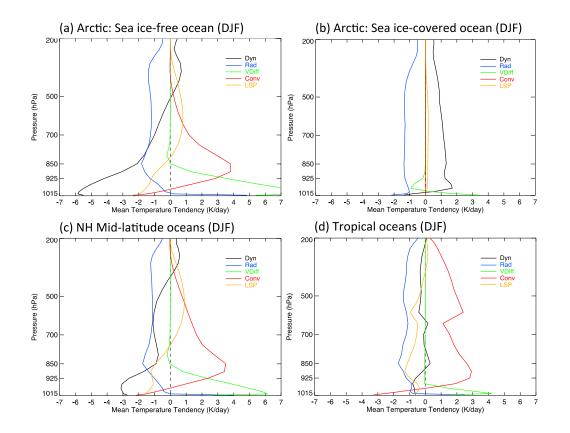
Climate models

Climate Models								
Model	AWI-CM	EC-Earth	CNRM-CM	NorESM	HadGEM			
Partner	AWI	BSC, UCL, SU	CNRS-GAME,	UiB, UR, Met.no	MO, UREAD			
			CERFACS					
Atmosphere	ECHAM6	IFS	ARPEGE-Climat	CAM-OSLO	MetUM			
_	T127 L95	T255/T511 L91	T127/T359 L91	1°×1° L32 / L46	N216/N96 L85			
Ocean	FESOM	NEMO	NEMO	NorESM-O (extended	NEMO			
	Unstruct. mesh	$1^{\circ}, 0.25^{\circ}$ L75	1°, 0.25° L75	MICOM)	$1^{\circ} \times 1^{\circ} L75$			
	15-100 km L41	,	,	1°, 0.25° L75	0.25°×0.25° L75			
	4.5-80 km L41							
Sea ice	FESIM	LIM3	GELATO	CICE	CICE			
Surface	JSBACH	HTESSEL	SURFEX	SURFEX	JULES			
CMIP6	Yes	Yes	Yes	Yes	Yes			

+ Russian model

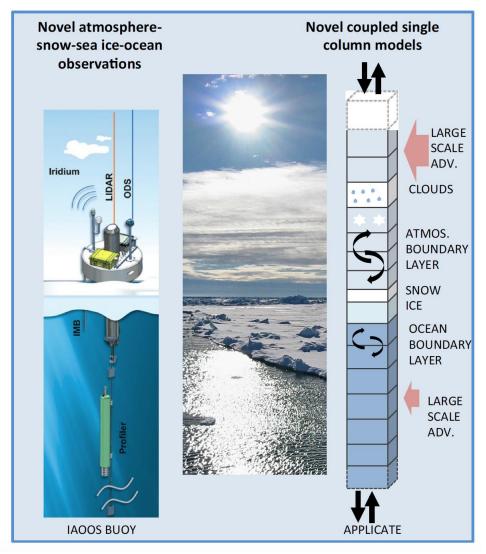
S2S models

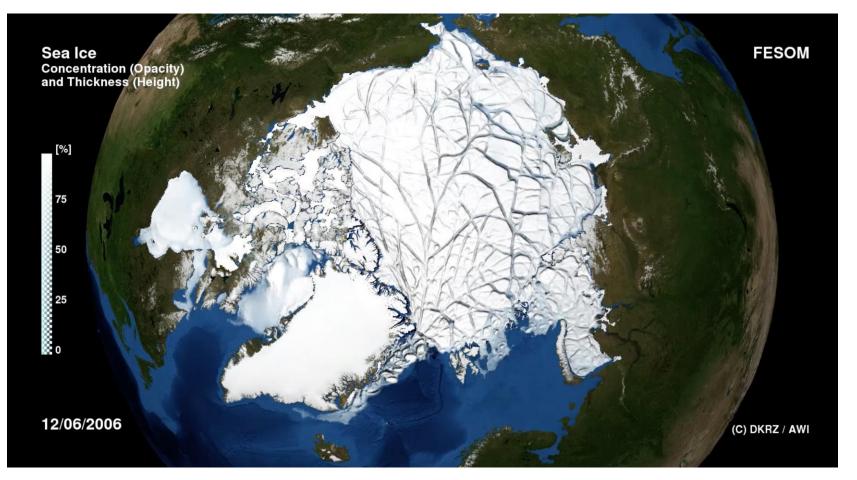
Subseasonal to Seasonal Prediction Systems							
Model	EC-Earth	CNRM-CM	IFS	HadGEM/GloSea			
Partner	BSC, UCL, AWI	CNRS-GAME	ECMWF	MO, UREAD			
Atmosphere	IFS	ARPEGE Climat	IFS	MetUM			
	T255/T511 L91	T255/T359 L91	T511-T319 L91	N216 L85			
Ocean	NEMO	NEMO	NEMO	NEMO			
	1°/0.25° L75	1°/0.25°, L75	1°, L75	0.25°×0.25° L75			
Sea ice	LIM3	GELATO	LIM2/3	CICE			
Land	HTESSEL	SURFEX	HTESSEL	JULES			
Data assimilation	Ensemble Kalman filter	Extended Kalman Filter	4D-Var	4D-Var, NEMOVAR			
		SAM2		3D-Var FGAT			



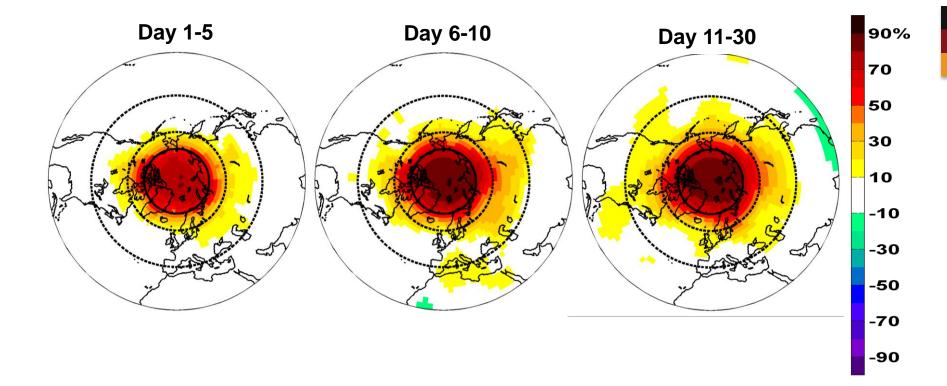
NWP models

Numerical Weather Prediction Systems							
Model	ARPEGE	AROME	IFS	AROME-Arctic			
Partner	CNRS-GAME	CNRS-GAME	ECMWF	Met.no			
Atmosphere	ARPEGE T1198, stretched HR (7.5km on grid pole), L105	AROME 1.3km / 500m, 90 vertical levels	IFS T1279 L137	AROME 2.5 km L65			
Ocean	N/A	N/A	N/A	N/A			
Sea ice	GELATO	GELATO	N/A	SICE			
Land	SURFEX	SURFEX	HTESSEL	SURFEX			
Data assimilation	4D-Var	dynamical adaptation	4D-Var	3D-Var			


YOPP high-resolution analyses, forecasts and physical processes database ("YOPP virtual field campaign")

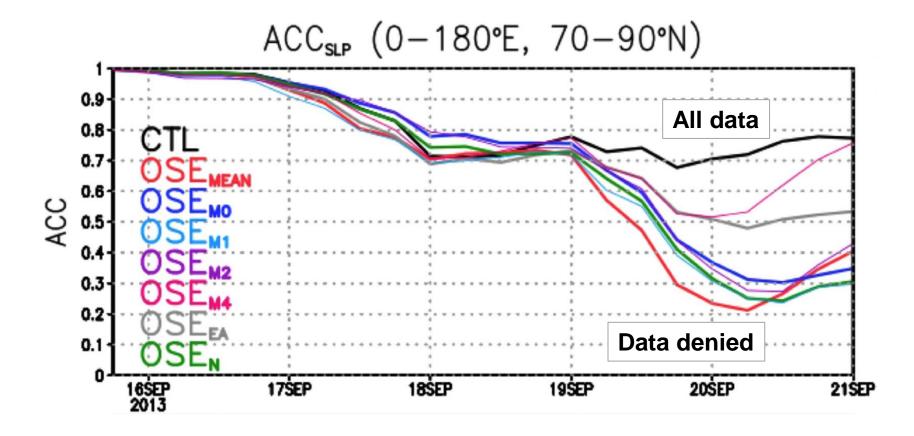

Coupled Single Column Modelling

High-resolution sea ice-ocean modelling



Wang et al. (2016), GRL

Coordinated relaxation experiments with S2S systems



Jung et al. (2014), Geophys. Res. Lett.

Data denial experiments

Source: Jun Inoue

HELMHOLTZ

Focus on three key areas:

- User engagement
- Dissemination
- ➤ Training

Experienced partners taking the lead:

- Arctic Portal
- Barcelona Supercomputing Centre
- Association of Polar Early Career Scientists

- Advance predictive capacity in polar regions
- Develop models with enhanced representation of Arctic processes
- Contribute to developing the Arctic observing system (prediction & model developement)
- Enhance our understanding of Arctic-midlatitude linkages (also from a prediction perspective)
- Bring different communities closer together
- Work with users and stakeholders
- Foster international collaboration
- Contribute significantly to YOPP

- Work with a group of users and stakeholders
- Workshops, meetings at professional conferences and interviews
- Virtual consultations and surveys

- APPLICATE website
- Social media campaign
- Visual identity material
- Dissemination material
- Press releases
- Project reports
- Papers in the peer-reviewed literature

