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 1 

Abstract 2 

 3 

Detection of tropical lows is performed in a suite of climate model simulations 4 

using objectively-determined detection thresholds that are resolution-dependent. 5 

It is found that there is some relationship between model resolution and tropical 6 

cyclone formation rate even after the resolution-dependent tropical cyclone 7 

detection threshold is applied. The relationship is investigated between model-8 

simulated tropical cyclone formation and a climate-based tropical cyclone 9 

Genesis Potential Index (GPI). It is found that coarser-resolution models 10 

simulate the GPI better than they simulate formation of tropical cyclones 11 

directly. As a result, there appears to be little relationship from model to model 12 

between model GPI and the directly-simulated cyclone formation rate. 13 

Statistical analysis of the results shows that the main advantage of increasing 14 

model resolution is to give a considerably better pattern of cyclone formation. 15 

Finer resolution models also simulate a slightly better pattern of GPI, and for 16 

these models there is some relationship between the pattern of GPI simulated by 17 

each model and that model’s pattern of simulated tropical cyclone formation.  18 
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1. Introduction 19 

Recent fine-resolution modelling results have shown considerable ability to 20 

simulate the climatological observed global formation rate of tropical cyclones; 21 

for a recent review, see Knutson et al (2010a). These models have also now 22 

shown an ability to generate a realistic distribution of tropical cyclone intensity 23 

(Bender et al. 2010; Lavender and Walsh 2011; Murakami et al. 2011a).  While 24 

coarser-resolution models have only a limited ability to simulate tropical 25 

cyclone intensity, they have demonstrated good performance in simulating the 26 

interannual variation of tropical cyclone formation (Vitart and Anderson 2001; 27 

LaRow et al. 2008; Zhao et al. 2009). The quality of such simulations is 28 

important for skilful dynamical seasonal predictions of tropical cyclone 29 

formation as well as for projections of future climate. Since it is crucial that a 30 

climate model used for the prediction of future climate gives a good simulation 31 

of the current climate (e.g. Delsole and Shukla 2010), an evaluation of the 32 

ability of such models to reproduce the current tropical cyclone climatology is 33 

important. This is particularly vital at the scale of individual tropical cyclone 34 

formation basins, where models have shown less ability to simulate observed 35 

cyclone formation rates, and where the response to global warming of tropical 36 

cyclone formation varies considerably from model to model (Knutson et al. 37 

2010a,b). 38 
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 In many cases, it is not clear why models produce different basin-scale 39 

formation rates for tropical cyclones. There are many factors in the real climate 40 

that produce variations in tropical cyclone formation rate: vertical wind shear 41 

(Palmen 1956; Gray 1968; McBride and Zehr 1981); the presence of substantial 42 

pre-existing convective development (e.g. Hendricks et al. 2004);  temporal and 43 

geographical variations in sea surface temperature (Gray 1968; Vecchi and 44 

Soden 2007; Murakami et al. 2011b); and variations in mid-tropospheric 45 

relative humidity (Bister and Emanuel 1997). The combined effects of these 46 

variables on tropical cyclone formation rates has motivated the development of 47 

climatological or seasonal genesis parameters, indices that are derived from the 48 

best climatological fit to observed tropical cyclone formation for variables that 49 

are known to affect tropical cyclone formation on shorter time scales (e.g. Gray 50 

1975, Royer et al. 1998; Emanuel and Nolan 2004; Camargo et al. 2007; 51 

Camargo et al. 2009; Tippett et al. 2011). While all of these physical factors are 52 

present in model simulations and influence simulated tropical cyclone formation 53 

rates, there are additional model-dependent factors that can influence formation 54 

rates: for instance, the model specification of horizontal diffusion and the details 55 

of the model’s convective parameterization (e.g. Vitart et al. 2001).  56 

Identifying the reasons for these different model responses is the main 57 

goal of an intercomparison process. There are many possible strategies for 58 

determining the reasons for model responses. In principle, the use of a common 59 
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set of physical parameterisations among a group of models should reduce the 60 

number of degrees of freedom between the models that would be causing 61 

different responses. In practice, even if models employ a similar 62 

parameterisation of cumulus convection, there is no guarantee that the effect of 63 

using this parameterisation would be the same in two different models, as 64 

interactions of the cumulus scheme with other elements of the physics in 65 

different models could generate different simulation outcomes. In addition, 66 

implementing these changes across a suite of climate models is time consuming 67 

and would also usually require re-tuning the model after the new 68 

parameterisation scheme is introduced.  69 

Alternatively, some insight can be gained by comparison of the 70 

performance of groups of models that contain common elements. For example, 71 

Lin et al. (2006) evaluated the performance of 14 AR4 climate models in 72 

generating the Madden-Julian Oscillation (MJO; Madden and Julian 1971).  73 

This intercomparison strengthened previous conclusions (Tokioka et al. 1988; 74 

Wang and Schlesinger 1999) that the best models for simulating the MJO were 75 

ones with convective closures or triggers linked to moisture convergence. 76 

Physically, an important factor for a good MJO simulation appears to be the 77 

preconditioning of the atmosphere through moistening rather than quick release 78 

of available potential energy.  This concept has been applied in a number of 79 
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subsequent improvements of model simulation of the MJO (Fu and Wang 2009; 80 

Seo and Wang 2010).   81 

This comparison approach has the advantage of simplicity but it does rely 82 

on the evaluation of the model performance being conducted in a consistent 83 

manner, using the same model output metrics for every model in the 84 

comparison. In general, the use of consistent evaluation metrics is an important 85 

first step in any intercomparison of climate model results but has not been 86 

employed to date in the analysis of most climate simulation of tropical cyclones 87 

(Walsh et al. 2007).  This paper outlines initial results from a multi-model 88 

intercomparison project, the Tropical Cyclone climate Model Intercomparison 89 

Project (TC-MIP; Walsh et al. 2010).  Like all intercomparison projects, it aims 90 

to improve the simulation of the chosen phenomenon through identification of 91 

common model features that have led to improved simulations. Ideally, such 92 

intercomparisons should have many models available for analysis, so that clear 93 

groups of better-performing models can emerge from the analysis of the results. 94 

One drawback of this approach for the generation of tropical cyclones by 95 

climate models is that relatively few global models have been run for the long, 96 

very fine resolution simulations required to generate a good tropical cyclone 97 

climatology. Such resolution is needed for best results because of the small 98 

scale of tropical cyclones compared to the typical resolution of a climate model; 99 

ultimately, a horizontal resolution as fine as a few kilometres may be required 100 

(Chen et al. 2007). Nevertheless, coarse resolution climate models have shown a 101 
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surprising ability to generate realistic tropical cyclone formation rates, although 102 

the storms so generated clearly have lower intensities than many observed 103 

storms. Thus, in addition to selected recent fine-resolution modelling results, we 104 

also examine results from the CMIP3 archive (http://cmip-pcmdi.llnl.gov/). 105 

Analysis of detected tropical cyclones for model results contained in the 106 

CMIP3 archive has been performed previously by a number of authors (e.g. 107 

Yokoi et al. 2009). In general, though, these results were either focused on a 108 

particular region or did not use systematic, model-independent common metrics 109 

for the specific purpose of comparing the model climatology of tropical 110 

cyclones with observations. Camargo et al. (2005) analysed the results of three 111 

GCMs with horizontal resolutions of approximately 2.5 degrees using a model- 112 

and basin-dependent tropical cyclone detection routine. They found that the 113 

models were able to reproduce basic features of the observed tropical cyclone 114 

climatology. Camargo et al. (2007) used the same cyclone detection method for 115 

the analysis of the output of several GCMs and compared the detection tropical 116 

cyclone numbers to those estimated from an empirical index of tropical cyclone 117 

formation, the Emanuel and Nolan (2005) Genesis Potential Index (GPI). They 118 

found that there was little relationship from model to model between the GPI 119 

and model-simulated cyclone formation; a model with a high GPI did not 120 

necessarily have a high tropical cyclone formation rate. In the present study, we 121 

examine global model results and employ common metrics for model 122 
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evaluation, including a resolution-dependent, model-independent tropical 123 

cyclone detection technique. Section 2 gives a list of models and of 124 

observations used for model validation, Section 3 describes the analysis 125 

methodology, Section 4 details the results and Section 5 provides a discussion 126 

and concluding remarks. 127 

 128 

2. Models and validation data sets 129 

As mentioned above, two sets of model results are examined here. To provide a 130 

baseline comparison, the CMIP3 model archive is analysed. Table 1 gives some 131 

details of the models, including their resolution as stored in the archive and their 132 

convection schemes. In addition, two finer-resolution, more recent model results 133 

are analysed for current climate conditions. The MRI/JMA 20-km global mesh 134 

model (Mizuta et al. 2006) is run using a timeslice method for model years 135 

1979-2003. In the timeslice method, the SSTs from a coarser-resolution model 136 

run are used to force a fine-resolution atmospheric general circulation model 137 

(AGCM). The model is hydrostatic, with 60 vertical levels, uses a semi-138 

Lagrangian time integration scheme and a prognostic Arakawa-Schubert 139 

cumulus convection scheme (Randall and Pan 1993). The CMCC_MED model 140 

(Scoccimarro et al. 2011) is a fully coupled GCM without flux adjustments, 141 

using an atmospheric spectral resolution of T159 (equivalent to a horizontal 142 

resolution of about 80 km; Roeckner et al 2003). The parameterization of 143 
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convection is based on the mass flux concept (Tiedtke 1989), modified 144 

following Nordeng (1994). The global ocean model used is a 2 degree 145 

resolution global ocean model (Madec 1998) with a meridional refinement near 146 

the equator to 0.5 degrees. The CMCC_MED model output used in this work 147 

are obtained running the model over the period 1970-1999 using 20th century 148 

(20C3M) atmospheric forcings as specified by the IPCC (http://www-149 

pcmdi.llnl.gov/ipcc/about\_ipcc.php). Results from these two recent models are 150 

likely to be more similar to model results that will be obtained from a similar 151 

analysis of the CMIP5 model archive (http://cmip-pcmdi.llnl.gov/cmip5). Thus 152 

another purpose of this paper is to establish a model intercomparison 153 

methodology that can be applied to a suite of finer-resolution climate model 154 

results, when these become available. 155 

 Model tropical cyclone formation is compared with the IBTrACS best 156 

track data (Knapp et al. 2010), a global compilation of the best estimated 157 

tropical cyclone positions and intensities. The observed cyclones are analysed 158 

over a twenty-year period corresponding to the current climate (1980-1999). 159 

Data used to construct observed versions of model diagnostic parameters is 160 

taken from the NCEP-2 reanalyses (Kanamitsu et al. 2002) over the same 161 

period. For selected fields, comparisons are also made with the ERA40 162 

reanalyses (Uppala et al. 2005). Both reanalysis data sets are at a horizontal grid 163 

spacing of 2.5 degrees. 164 

http://cmip-pcmdi.llnl.gov/cmip5�
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 165 

3. Methods 166 

It is important in an intercomparison project that aims to evaluate the ability of 167 

climate models to generate tropical cyclones that it is agreed what constitutes a 168 

tropical cyclone in the climate model output. One metric would be simply to 169 

apply the criterion applied to observed tropical cyclones, that the storms must 170 

have 10-minute average wind speeds of 17.5 ms-1 or greater at a height of 10m 171 

above the surface. This may not be appropriate for climate model output, 172 

though, as there are numerous cyclonic disturbances generated by a model that 173 

satisfy this criterion that are not tropical cyclones, for example, mid-latitude 174 

cyclones. Thus additional structural criteria that identify simulated tropical 175 

cyclones need to be imposed. Typically, these have been in the form of 176 

assuming that low-level wind speed, usually at 850 hPa, exceeds that in the 177 

upper troposphere, and that temperature anomalies in the center of the storm are 178 

larger in the upper troposphere than in the lower troposphere. Due to the 179 

thermal wind equation, these conditions are essentially equivalent, but they are 180 

often both imposed because of the ability of mid-latitude storms to sometimes 181 

mimic one or the other of these two conditions (e.g. Shapiro and Keyser 1990). 182 

 Here, the resolution-dependent method of Walsh et al. (2007) is used to 183 

track cyclones. This method assumes that simulated tropical cyclones are best 184 

compared with fine-resolution observations that have been degraded to the 185 
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resolution of the model, in a manner analogous to that usually performed for 186 

other comparisons of observations to model simulations of variables such as 187 

precipitation. When observed tropical cyclones are regridded to the relatively 188 

coarse resolution of a climate model, their maximum wind speeds become less, 189 

and so also the detection threshold for tropical cyclone winds falls from the 190 

observed value of 17.5 ms-1 to lower values (Fig. 1).  The advantage of this 191 

technique is that it provides a baseline, model-independent comparison of 192 

simulated tropical cyclone formation rates. This detection technique also 193 

assumes a number of other thresholds: 194 

• Points with vorticity more cyclonic than 1.x10-5 s-1 are first 195 

identified; this threshold serves merely to eliminate isolated points 196 

of weak cyclonic vorticity, thus speeding up the detection routine; 197 

• A centre of low pressure is then found; 198 

• At the centre of the storm, there must be a warm core, specified as 199 

the sum of the temperature anomalies at the centre of the storm 200 

versus the surrounding environment, and the temperature anomaly 201 

at 300 hPa must be greater than zero; in addition, the mean wind 202 

speed over a specified region at 850 hPa must be greater than that 203 

at 300 hPa. 204 

• The resolution-dependent 10 m windspeed threshold is then 205 

imposed. 206 
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• Detected storms need to satisfy these conditions for at least 24 207 

hours. 208 

The solid line given in Fig. 1 is the one that is employed here to set the 209 

resolution-dependent detection threshold. Other symbols shown on Fig. 1 210 

correspond to different vortex specifications, as explained in Walsh et al. 211 

(2007). 212 

 A number of atmospheric variables have been previously shown to 213 

influence the rate of tropical cyclone formation. The Emanuel and Nolan (2004) 214 

genesis parameter is here employed as a means of comparing the effects of 215 

several of these variables simultaneously: 216 

 217 

where η is the absolute vorticity at 850 hPa in s-1, H is the relative humidity at 218 

700 hPa in percent, Vpot is the potential maximum wind speed in ms-1 and 219 

Vshear is the magnitude of the vertical wind shear between 850 hPa and 200 220 

hPa, also in ms-1.   221 

 A number of standard statistical measures were applied to the analysis of 222 

the climate variables that compose the GPI, collected in the form of Taylor 223 

diagram (Taylor 2001). In addition, in our analysis, for the first time a Taylor 224 

diagram is constructed comparing observed tropical cyclone formation rates to 225 
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simulated rates. One difference in the analysis contained here from the standard 226 

Taylor diagram is that the zonal mean value of each quantity is removed before 227 

the correlation is performed, giving an anomaly correlation. This is a more 228 

sensitive statistic than the standard pattern correlation as it removes the high 229 

pattern correlation that is caused simply by the variables having substantial 230 

variation with latitude caused by the known equator to pole climatological 231 

gradients. 232 

 The results shown here are similar to those already described in Walsh et 233 

al. (2010), but there are two differences from the results described in that paper. 234 

Firstly, a bug was fixed in the data interface section of the detection routine, 235 

which improved the ability of the routine to detect weak tropical cyclones. In 236 

addition, a further improvement to the method was made, in that for the CMIP3 237 

model results the “background” climatological mean sea level pressure (mslp) 238 

was increased. This further improved the detection of weak storms by enabling 239 

them to stand out from the background more clearly, resulting in an improved 240 

detection of storms in the CMIP3 model results. 241 

  242 

4. Results 243 

Figure 2 compares results of the GPI diagnosed from the higher-resolution 244 

CMIP3 simulations for the January through March climatology, to the GPI 245 
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diagnosed from NCEP2 reanalyses with a horizontal resolution of 2.5 degrees. 246 

While there appears to be considerable variation between the model simulations 247 

of GPI, most models generate a pattern similar to that derived from the NCEP 248 

reanalyses.  Some systematic differences can be seen between the model results 249 

and the NCEP2 GPI, though. For instance, many models have excessive GPI in 250 

the South Atlantic, and many models have regions of GPI that extend too far 251 

east into the South Pacific. These simulated GPI values can be quite large: for  252 

instance, in the MPI ECHAM5 model, maximum values in excess of 40 (per 253 

2.5x2.5 degree grid box per 20 years) are found, compared with maximum 254 

values derived from the NCEP2 reanalysis in the same region of 10-15. The 255 

excessive simulated GPI values are likely associated with the known dry bias in 256 

the mid-tropospheric relative humidity from the NCEP reanalyses (Bony et al. 257 

1997). This would strongly affect the GPI values since they depend on the cube 258 

of the 700 hPa relative humidity. This result was also noted by Camargo et al. 259 

(2007). 260 

Figure 3 gives a Taylor diagram corresponding to the plots in Fig. 2, and 261 

this diagram also includes the lower-resolution CMIP3 models. Values are 262 

shown for both January-March (JFM) and July-September (JAS). The statistics 263 

are evaluated between latitudes 40S and 40N and the anomaly correlation rather 264 

than the pattern correlation is plotted, as described in section 3. Models with 265 

horizontal grid spacings finer than 2.8 degrees are indicated in red. In general, 266 
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with the exception of one outlier, the finer-resolution models give superior 267 

performance, with better correlations and with standard deviations more similar 268 

to the NCEP2 reanalyses, indicated by the red line. Most models have higher 269 

GPI than that diagnosed from the NCEP2 reanalyses, as also seen in Fig. 2. 270 

Similarly, Figure 4 shows the relationship between the GPI index and model 271 

resolution for JFM, with the GPI value averaged over the latitudes specified 272 

above.  A linear regression line is fitted to the model results, and the NCEP2 273 

and ERA40 reanalyses GPI values are given for comparison. With the exception 274 

of a few outliers, in general the finer-resolution models more closely approach 275 

the reanalysis values, although there is little dependence of GPI value on 276 

resolution. Interestingly, most GPI values from the models are lower than that 277 

diagnosed from the ERA40 reanalyses but higher than those from the NCEP2 278 

reanalyses, consistent with the NCEP2 values having a dry bias in the mid-279 

troposphere. 280 

Figure 5 shows the detected January-March formation of tropical 281 

cyclones in the models compared with the best-track data, in the same order of 282 

models as Figure 2 (note that not all models listed in Table 1 had sufficient 283 

output archived to enable cyclone tracking to be performed). It is clear that most 284 

finer-resolution models (finer than 2.8 degrees) simulate a reasonable pattern of 285 

cyclone formation. In addition, Figure 6 shows results from coarser resolution 286 

models, where the simulated pattern of formation is less adequate. In contrast to 287 
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the results for the GPI, there is little or no simulated cyclone formation in the 288 

South Atlantic. In addition, a number of the finer-resolution models are 289 

simulating excessive formation in the northwest Pacific at this time of year, 290 

compared with the best-track data.  291 

It is evident from Figures 5 and 6 that the lowest resolution models tend 292 

to have less cyclone formation, and Figure 7 summarizes this result. The 293 

correlation between formation and resolution for the CMIP3 models is -0.5, 294 

which is statistically significant at the 95% level. Note, though, that this could 295 

also be regarded as a threshold effect. For instance, Figure 7 shows that once the 296 

models have resolutions finer than about four degrees, it could be argued that 297 

there is actually little relationship between resolution and formation rate for this 298 

set of CMIP3 models, since some finer-resolution models also have relatively 299 

low simulated cyclone numbers. Figure 8 shows the Taylor diagram of cyclone 300 

formation for JFM and JAS compared with the observed best track data, 301 

corresponding to Fig. 5 and 6. Also included in this diagram are the results from 302 

the two higher-resolution (post-CMIP3) models listed in section 2, indicated by 303 

a red x. It is clear from this analysis that the higher-resolution CMIP3 models 304 

have the best pattern correlations compared with the observed formation, and 305 

the post-CMIP3 models have among the best correlations of all, although they 306 

do not necessarily have the smallest model biases. This may suggest that the 307 

main advantage of finer resolution is to generate a better pattern of formation. 308 
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Note that the anomaly correlations for the GPI index (Fig. 3) are substantially 309 

higher than those for the directly simulated cyclone formation (Fig. 8), 310 

reinforcing the point that it is fundamentally easier for the models to simulate a 311 

good pattern of large-scale climate variables that are known to influence 312 

tropical cyclone formation rates than of tropical cyclone formation itself. 313 

Turning to Northern Hemisphere results, Figure 9 shows GPI results for 314 

July-September compared with simulated cyclone formation. For brevity, only 315 

selected model results are shown. Once again, there is a large variation in the 316 

results, with some models capturing well the pattern of diagnosed genesis, and 317 

other models performing less well. The accompanying Taylor diagram is shown 318 

previously in Fig. 3. Once again the fine-resolution models appear to be 319 

capturing the NCEP2 GPI a little better, although there are a number of outliers. 320 

As in January-March, most models have values of GPI that are larger than 321 

observed, and many models simulate GPI values over the North Pacific that are 322 

higher than diagnosed from the NCEP2 data. A number of models (not shown) 323 

also have excessive GPI in the regions near Indonesia, again consistent with the 324 

dry bias in the NCEP reanalyses. These models also tend to be those that 325 

overestimate GPI across the Pacific. 326 

Figure 9 also shows the simulated formation rates for July-September, for 327 

selected models; the accompanying Taylor diagram is given in Fig. 8. Some 328 

systematic biases in model formation compared with the observations are 329 
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apparent. Most models simulate considerably lower formation than observed in 330 

the North Atlantic, while simulated formation in the eastern north Pacific is 331 

usually lower than observed also. In contrast, simulated formation in the north-332 

west Pacific appears to be more accurate. There is a similar relationship 333 

between cyclone formation and resolution in JAS as in JFM for the CMIP3 334 

models, with a similar correlation of -0.54 (not shown). The corresponding 335 

Taylor diagram (Fig. 8) shows that once again the highest-resolution models 336 

have in general higher pattern correlations, although again not necessarily the 337 

smallest biases, as there is a considerable scatter in the simulated formation 338 

rates.  339 

To examine the ability of the models to simulate the observed 340 

geographical pattern of cyclone tracks, Figure 10 shows annual tropical cyclone 341 

tracks compared with the best track data, for finer-resolution models. As for 342 

formation, there are a number of systematic differences from the observed 343 

tracks that are common to many of models. Even so, the models are able to 344 

capture important aspects of the observed geographical variation of tracks: for 345 

example, most models simulate the observed minimum in cyclone track density 346 

in the central north Pacific, caused by the high climatological vertical wind 347 

shear in this region. Some models simulate a collection of short tracks in the 348 

South Atlantic, where cyclones are not observed frequently (Pezza and 349 

Simmonds 2005). The best track data have a higher track density overall than 350 
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most models, and many more tracks at higher latitudes than the models. In the 351 

North Atlantic, model tracks mostly tend to be restricted to low latitudes, with 352 

few tracks approaching the eastern United States, unlike the observed track 353 

pattern. This can also be seen in the northwest Pacific, with few simulated 354 

storms striking Japan. At least part of this difference may arise from the lack of 355 

an objective criterion in the observed best track data that is systematically 356 

imposed to indicate extratropical transition (Kofron et al. 2010), which if 357 

imposed would shorten the observed tracks in the mid-latitudes. In addition, it is 358 

noted that the CMIP3 archive consists largely of daily-mean data, and the 359 

tracking in the present study was performed on those data. Further analysis of 360 

these data (S. Yokoi, personal communication, 2011) suggests that in mid-361 

latitude regions, the faster translation speed of these storms makes them more 362 

difficult to detect in daily average data, thus leading to the lack of tracks at 363 

higher latitudes. 364 

While there may be some relationship between model formation rates and 365 

resolution, little or no inter-model global relationship was found between 366 

tropical cyclone formation and the GPI, or between model resolution and the 367 

GPI (not shown; see also Camargo et al. 2007). Nor was there are strong inter-368 

model global relationship between TC formation and the various components of 369 

the GPI (wind shear, relative humidity or MPI; not shown). Since there is some 370 

relationship between model resolution and TC formation, this suggests that it is 371 
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more difficult to improve the simulation of the large-scale variables that 372 

comprise the GPI simply by increasing resolution than it is to improve the 373 

model simulation of tropical cyclone formation by increased resolution. Some 374 

support for this hypothesis comes from Fig. 11, which shows TC formation 375 

normalized by GPI versus resolution. Comparing this result to Figs. 4 and 7, 376 

low resolution models tend to have reasonable to high GPI values but low TC 377 

formation. Thus in Fig. 11, the response shown in Fig. 7 is exacerbated. Coarse-378 

resolution models have low values of this quantity, as for these models GPI 379 

tends to be more similar to that of the high-resolution models while the directly-380 

simulated TC formation is low. While this relationship is statistically significant 381 

for the CMIP3 models, it clearly depends on other model-dependent factors 382 

apart from resolution. As an example of this effect, statistics show that the 383 

better resolution models are clearly performing better at simulating the observed 384 

wind shear (not shown), even though this is not translating into a genuine 385 

statistically-significant inter-model relationship between simulated wind shear 386 

and TC formation. 387 

It is well known that observed tropical cyclones arise from regions of 388 

persistent deep tropical convection (e.g. Charney and Eliassen 1964; Evans and 389 

Shemo 1996). Nevertheless, there also appears to be little inter-model 390 

relationship between precipitation and TC formation rates: models with lower 391 

total precipitation rates appear to be giving slightly more tropical cyclone 392 
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formation (not shown), although this relationship is not statistically significant. 393 

The finer resolution models also appear to have somewhat better simulation of 394 

precipitation overall (Fig. 12). In addition, there appears to be little relationship 395 

between convective precipitation rates, as specified by the model convective 396 

scheme, and tropical cyclone formation (not shown).  Nor does there appear to 397 

be an inter-model relationship between the ratio of convective precipitation to 398 

total precipitation and the tropical cyclone formation rate (not shown). On the 399 

other hand, of the higher-resolution models, the MIROC hires model has high 400 

resolution but a rather low generation rate of tropical cyclones, combined with a 401 

low fraction of convective precipitation. This may be related to the results of 402 

McDonald et al. (2005), who found that there appeared to be a relationship 403 

between model-generated convective rainfall and tropical cyclone formation, at 404 

least for higher-resolution models.  In the results shown here, there does not 405 

appear to be a strong correlation between this variable alone and seasonal 406 

formation rates of tropical cyclones.  407 

While the analysis indicates that it is difficult to find relationships that are 408 

robust between models, relationships between variables within a single model 409 

can be strong. As Fig. 3 shows, anomaly correlations between the individual 410 

model GPI patterns and the NCEP-derived GPI are high, with an average when 411 

taken across all models and seasons of about 0.6. Since the GPI was originally 412 

developed by tuning the NCEP-derived GPI values to the best track data, this 413 
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implies that anomaly correlations between individual model GPI patterns and 414 

the best track observed patterns of formation are also strong. Nevertheless, the 415 

individual model GPI is less reliable as a predictor of that model’s pattern of 416 

simulated cyclone formation, with anomaly correlations when averaged across 417 

all models and seasons of about 0.3. Higher-resolution models mostly have 418 

higher anomaly correlations between model GPI and model cyclone formation, 419 

however (not shown). 420 

  421 

5. Discussion 422 

 423 

Several studies have shown that simulated tropical cyclone frequency 424 

increases with increased resolution, all other things being equal (Murakami and 425 

Sugi 2010; Gentry and Lackmann 2010).  Figure 13 shows the relationship 426 

between annual model formation and resolution, using the Walsh et al. (2007) 427 

detection criterion. There is a statistically significant relationship between 428 

model formation of TCs and resolution, even when in this case the detection 429 

threshold is adjusted downwards for models of coarser horizontal resolution, 430 

thus making it easier to detect cyclones in such models. Even after this is done, 431 

simulated tropical cyclone formation in these coarse-resolution models remains 432 

low. Increased horizontal resolution thus may have an effect on tropical cyclone 433 

formation that is in addition to that of resolution only, as this would be 434 
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accounted for solely by the increasing threshold imposed by the detection 435 

technique. If a fixed threshold rather than a resolution-adjusted threshold were 436 

employed, this relationship would of course be even stronger, as has been 437 

shown previously by others. For instance, for storms simulated by the GISS 438 

model, with a resolution of 4.5 degrees, the maximum wind speed recorded for 439 

a simulated tropical cyclone is only just over 20 ms-1. Thus if the observed 440 

detection threshold of 17.5 ms-1 were imposed on the output of this model, even 441 

fewer storms would be detected than those shown in Fig. 13. More generally, if 442 

the formation and intensification of simulated tropical cyclones is related to a 443 

non-linear feedback process between the ocean and the atmosphere (Rotunno 444 

and Emanuel 1987), it can be argued that this process would operate more 445 

efficiently in a finer-resolution model. The higher wind speeds generated by the 446 

finer resolution model would enhance any such feedback process, and an 447 

increased number of model grid points in closer proximity to the storm centre 448 

would help amplify this process. An alternative explanation, though, is that the 449 

lack of detection of storms in low resolution models may be simply a result of 450 

the tracking algorithms not being able to track the storms properly at these 451 

resolutions, combined with the coarse temporal resolution of the CMIP3 results 452 

analysed here (Camargo and Sobel 2004).  453 

There appears to be little relationship between the choice of convective 454 

parameterisation and the model generation rate of tropical cyclones (Fig. 13). 455 
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Models employing various versions of the Arakawa-Schubert convection 456 

scheme (green squares) give a wide range of TC formation rates, as do models 457 

employing mass-flux or Zhang-McFarlane type schemes. While it is clear that 458 

the use of a particular convection scheme can give a systematic change in 459 

tropical cyclone formation rate within a single model (e.g. Yoshimura et al. 460 

2011), there are other factors that can cause changes in tropical cyclone 461 

formation rates. For instance, the two versions of the GFDL model that were 462 

run as part of the CMIP3 model suite (models 7 and 8 in Table 1) have the same 463 

convective parameterizations but are based on different dynamical cores, and 464 

yet the tropical cyclone formation rate of the two models as analysed here 465 

differs by more than a factor of two. Thus, in agreement with the results of 466 

Camargo et al. (2007), dynamical factors appear to be playing a strong role in 467 

the intermodal differences in tropical cyclone formation rate. 468 

 The Taylor diagrams shown here for the different variables show that 469 

simulation of tropical cyclone formation is in general considerably worse that 470 

the model simulation of any variable that composes the GPI. The GPI is often 471 

well-simulated by coarse-resolution models (compare Fig. 3 to Fig. 8, for 472 

instance). We interpret this as further demonstrating the importance of 473 

resolution for the simulation of tropical cyclone formation. A coarse-resolution 474 

model may be able to generate a reasonable GPI pattern, derived as it is from 475 

large-scale variables, but is less well able to generate the actual rate of tropical 476 
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cyclone formation. While this result might suggest that given limited computing 477 

resources, for making climate change predictions of tropical cyclone formation 478 

indices like the GPI should be used in preference to direct simulation of tropical 479 

cyclones, these indices have their own uncertainty issues. They are tuned to the 480 

current climate and it is debatable whether such a functional relationship would 481 

hold in a warmer world in exactly the same way. Note also that most models 482 

have larger GPI rates than observed. The original formulation of the GPI was 483 

tuned using the NCEP reanalyses, which are known to be drier than observed in 484 

the tropics (Bony et al. 1997), which would explain this bias in the GPI derived 485 

from the CMIP3 models. 486 

 Most models simulate little cyclone formation in the Atlantic, despite 487 

having reasonable GPI patterns in many cases. Table 2 compares results in the 488 

western North Pacific basin to those in the Atlantic. While GPI values are 489 

considerably lower in the Atlantic than in the western North Pacific, simulated 490 

formation rates in the Atlantic decrease even more than does the GPI. In 491 

addition, the ratios of both simulated GPI and tropical cyclone formation 492 

between the Atlantic and western North Pacific are both well below the 493 

observed ratio of formation of about 1:2. In the results analysed here, high-494 

resolution models appear to have higher formation rates in this basin than 495 

coarse-resolution models. For the two post-CMIP3 models (Table 2), simulated 496 

Atlantic formation is higher than the CMIP3 average, although still below the 497 
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observed numbers. Daloz et al. (2011) showed a strong relationship between the 498 

able of models to generate Atlantic Easterly Waves (AEWs) and the model 499 

generation of tropical cyclones. It is likely that the ability of models to generate 500 

AEWs, the main precursor for tropical cyclone formation in the Atlantic basin, 501 

is related to the resolution of the model (Thorncroft and Hodges 2001). This 502 

implies that climate model resolution may be particularly important in the 503 

Atlantic basin for a good simulation of tropical cyclone formation. 504 

 In summary, we find the following results from the initial stage of this 505 

intercomparison: 506 

• There is some relationship between model resolution and tropical cyclone 507 

formation rate even after a resolution-dependent tropical cyclone 508 

detection threshold is applied. This may imply some non-linearity in the 509 

simulated tropical cyclone formation process different from the largely 510 

linear dependence of  the resolution-adjusted detection threshold 511 

• Coarse-resolution models simulate the Genesis Potential Index better than 512 

they simulate the formation of tropical cyclones directly. As a result, 513 

there appears to be little inter-model relationship between model GPI and 514 

model directly-simulated formation rate. In contrast, there are some 515 

relationships within individual, finer-resolution models between patterns 516 

of simulated tropical cyclone formation and genesis potential index 517 

patterns. 518 
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• The main advantage of finer model resolution, apart from giving a 519 

somewhat better simulation of tropical cyclone formation rate, is to give a 520 

better pattern of formation rate. 521 

 522 

Ideally, it would be preferable if such climate model intercomparisons were 523 

conducted using a larger suite of fine-resolution simulations similar to the two 524 

post-CMIP3 models used here. In addition, performing common perturbation 525 

experiments to determine the model responses to idealized forcings will shed 526 

light on the model responses to climate change. This approach is envisaged as 527 

part of the U.S. Clivar Working Group on Hurricanes 528 

(http://www.usclivar.org/hurricanewg.php), for which the analysis methodology 529 

established here will be employed. 530 

  531 
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Table 1. List of CMIP3 models analysed, along with their resolutions and 741 

convective parameterisations (MF: Mass flux-type scheme; MFK mass flux 742 

with Kuo-type closure; ZM: Zhang and McFarlane (1995); MFGR: Gregory and 743 

Rowntree (1990); RAS: Relaxed Arakawa-Schubert (Moorthi and Suarez 1992); 744 

PCAS: Arakawa-Schubert with prognostic closure (Randall and Pan 1993); 745 

MFT: Mass flux scheme following Tiedtke (1989) and Nordeng (1994)).  746 

 747 
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No. Model Institution Resolution 
(deg.)  

Convective 
Parameterisation 

1 BCCR-BCM2.0 Bjerknes Centre for Climate Research 2.8 x 2.8 MFK 

2 CGCM3.1(T47) Canadian Centre for Climate Modelling & 
Analysis 

 

3.75 x 3.75 ZM 

3 CGCM3.1(T63) Canadian Centre for Climate Modelling & 
Analysis 

 

2.8 x 2.8 ZM 

4 CNRM-CM3 Météo-France / Centre National de 
Recherches Météorologiques 

2.8 x 2.8 MFK 

5 CSIRO-Mk3.0 CSIRO Atmospheric Research 1.9 x 1.9 MFGR 

6 CSIRO-Mk3.5 CSIRO Atmospheric Research 1.9 x 1.9 MFGR 

7 GFDL-CM2.0 US Dept. of Commerce / NOAA / 
Geophysical Fluid Dynamics Laboratory 

2.5 x 2.0 RAS 

8 GFDL-CM2.1 US Dept. of Commerce / NOAA / 
Geophysical Fluid Dynamics Laboratory 

2.5 x 2.0 RAS 

9 GISS-AOM NASA / Goddard Institute for Space 
Studies 

4.0 x 3.0 MF 

10 GISS-EH NASA / Goddard Institute for Space 
Studies 

5.0 x 4.0 MF 

11 GISS-ER NASA / Goddard Institute for Space 
Studies 

5.0 x 4.0 MF 

12 FGOALS-g1.0 LASG / Institute of Atmospheric Physics 2.8 x 3.0 ZM 

13 INM-CM3.0 Institute for Numerical Mathematics 5.0 x 4.0 Modified Betts (1986) 

14 IPSL-CM4 Institut Pierre Simon Laplace 3.75 x 2.5 Modified Emanuel (1991) 

15 MIROC3.2(hires) University of Tokyo, National Institute for 
Environmental Studies, and JAMSTEC 

1.1 x 1.1 PCAS 

16 MIROC3.2(medres) University of Tokyo, National Institute for 
Environmental Studies, and JAMSTEC 

2.8 x 2.8 PCAS 

17 ECHAM5/MPI-OM Max Planck Institute for Meteorology 1.9 x 1.9 MFT 

18 MRI-CGCM2.3.2 Meteorological Research Institute 2.8 x 2.8 PCAS 

19 NCAR-CCSM3 National Center for Atmospheric Research 1.4 x 1.4 ZM 

20 NCAR-PCM1 National Center for Atmospheric Research 2.8 x 2.8 ZM 

21 UKMO-HadCM3 Hadley Centre for Climate Prediction and 
Research / Met Office 

3.75 x 2.5 MFGR 

22 UKMO-HadGEM1 Hadley Centre for Climate Prediction and 
Research / Met Office 

1.9 x 1.25 Modified MFGR 

 748 
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Table 2. Comparison of observed, CMIP3 and finer-resolution models average 750 

TC formation by basin with GPI values, July-September 751 

 Western 
North 
Pacific 

Atlantic 

Observed 15 7 

CMIP3 Simulated 9.3 0.9 

GPI 4.5 0.9 

MRI 20 km 8.9 2.8 

CMCC MED 17 1.5 

 752 

  753 

  754 
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 755 

Figure 1. Variation with resolution of 10 m wind speed detection threshold for 756 

tropical cyclones, for various vortex specifications as described in Walsh et al. 757 

(2007).758 
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Figure 2. Emanuel genesis parameter fields derived from NCEP2 reanalyses (top left) and higher-resolution CMIP3 models, 
January-March. Formation rate is per 2.5x2.5 degree grid box per 20 years.  
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JFM 

 

JAS 

 

Figure 3. Taylor diagram of model GPI versus NCEP reanalyses, (top) JFM and 
(bottom) JAS. Model numbers are the same as in Table 1, with higher-
resolution models in red. The standard deviation of the NCEP reanalyses is 
indicated by the red line. 
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Figure 4. Emanuel and Nolan GPI versus resolution for the CMIP3 models, 

JFM. GPI value derived from NCEP2 reanalyses is indicated by a circle, and the 

value from the ERA40 reanalyses is indicated by a triangle.
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Figure 5. Tropical cyclone genesis for higher-resolution models (January-March), same units as Fig. 2, for iBTracs best 
track data (top left) and model tropical cyclone detections, after the method of Walsh et al. (2007).  
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Figure 6: The same as Fig. 5 for lower-resolution models. 

 



Walsh et al Tropical Cyclone Intercomparison – Page 43  

43 
 

 

Figure 7: JFM simulated TC formation for CMIP3 models versus resolution. A 
line of best fit is included. 
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Figure 8. Taylor diagram for tropical cyclone formation versus best track data 
corresponding to the models shown in Figs. 5 and 6: (top) JFM and (bottom) 
JAS. Higher-resolution CMIP3 models are indicated in red. Two finer-
resolution recent models are indicated with a red x.
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Figure 9. The same as Figure 2 for July-September (upper two rows), for selected fine and coarse-resolution models, 

including a comparison to model cyclone formation rates (lower two rows).
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Figure 10: Annual tropical cyclone tracks for finer-resolution models. Observed and model-simulated formation rates for 
each basin are also given.
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Figure 11. Cyclone formation rate normalized by GPI, as a function of 

resolution, for JFM. Included also is the same quantity for the best track values 

divided by the NCEP2 reanalyses-derived GP (circle) and by the ERA40 

reanalyses-derived GP (triangle). 
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Figure 12. Taylor diagram for JAS total precipitation. 
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Figure 13. CMIP3 model resolution (in degrees of latitude) versus diagnosed 

model TC genesis, with the detection threshold adjusted for resolution. 

Observed annual formation is shown by the red circle; green are models that 

employ versions of the Arakawa-Schubert convection scheme; yellow are 
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models that use the Zhang-McFarlane scheme; brown are models that use mass-

flux schemes; and blue are models with other convection schemes. 


