Ecosystem Responses

Lottia gigantea
Tetraclita rubescens

Kelletia kelletii

Mexacanthina 1. lugubris

Figure 2 Some examples of range extensions and
contractions in rocky intertidal species along the Californian
coast. Arrows indicate the limit to which each of the species
ranges have reached and the direction of shift (Zacherl ef
al., 2003; Dawson et al., 2010; Fenberg and Rivadeneira,
2011; Fenberg et al., 2014).

Planting vegetation offers one way to reduce erosion at
some sites. Top photo shows a pre-project shoreline on
Wrye Island in Queen Anne’s County, Maryland. Marsh
grass was planted on sand fill and short, stone groins were
added. Middle photo is three months after installation.
Bottom photo is six years after installation. (Image from
Virginia Institute of Marine Science)



How do we separate the physical and biological drivers of change?
How will we separate local and remote effects? Natural and Forced?
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Not all species
respond the

same way
Is there
anything to
learn by
studying
resilient
species? : s
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Figure 1.11 a. Depth-averaged 0 to 700 m OHC trend for 1971-2010, based on a grid of 2° longitude by 4° latitude, colours and grey contours in degrees

Celsius per decade. From IPCC AR5 (Rhein et al., 2013); b. Zonally averaged temperature trends (latitude versus depth). Colours and grey contours in
degrees Celsius per decade for 1971-2010 with zonally averaged mean temperature over-plotted (black contours in degrees Celsius).’



Cascades of
Physical,
Chemical,
ecosystem
Impacts are
complex and
complicated
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Water-Food-
Energy-Health
Nexus and the
role of marine
ecosystems in
Food Security
are far from
understood
under GM
variability and
Trends
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RISK M AN AGEMENT rsea related hazards)

Global Monsoon
predictions and
projections
downscaled to the
coasts can serve the
goals of Mitigation
and Adaptation of
GM impacts on the
coasts
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GM Impacts will
exacerbate pre-
existing
vulnerabilities in
food, water,
energy and health
sectors.

Impacts on Armed
and Civil
Conflicts??
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Figure 2.3 Contrasting risk of impacts to ocean and society from different anthropogenic CO, emissions. Source: the authors, adapted from Gattuso et al. (2015).
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Biggest unknown is Disease Pressure changes due to warming

Figure 3.1.4 The lysis of microbial cells releases not only cellular components but also the DNA that is contained into the cells. This DNA, once out of the
cells, is named extracellular DNA. (Graphic Michael Tangherlini).




Hgure 3.3.2 Seaweeds dominate intertidal and shallow subtidal rocky reefs along ~25% of the world’s coastline. The map show the global distribution of
seaweed forests (green, adapted from Steneck and Johnson, 2013). However, ocean warming has led to regime-shifts in several regions (red symbols),
where complex, highly productive seaweed forests have been lost and replaced by structurally simple coralline crusts, filamentous turf or small foliose
seaweeds. The photos show rocky reef habitats in Western Australia before (2005) and after (2013) a marine heatwave caused a 100 km range contraction of
kelp (Ecklonia radiata). At the same time, subtropical and tropical herbivorous fishes such as parrotfish (Scarus sp.) increased substantially in abundance and

they now suppress the recovery of kelp forests (Wemberg et al., 2016a). © T. Wernberg.




Continuous monitoring is needed to track the warming of impacts
and global monsoon changes
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Figure 3.4.1 The global distribution of sait marshes and relative abundance. Saltmarshes are far less abundant in the tropics (areas in grey) where mangroves
dominate. An interactive version can be found at http://maps.inc.org/globalmaps.html. Hoekstra et al., 2010.
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Land-Ocean Interactions in the Coastal Zone: Modeling and Data
needs are a HUGE challenge for navigating the future
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We know very little about Thresholds and Tipping Points in GM
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We don’t know
most of the
biological
loopholes.
Mechanistic
models needed

Figure 1 Competition-
based model simulating
future populations of the
northem barmacle species
Semibalanus balanoides
and the southem species
Chthamalus spp. under high
and low emissions scenarios
(Hawkins et al., 2009,
adapted from Poloczanska
et al., 2008).
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Figure 3.8.3 Sea-surface temperature (SST) time-series for reef-containing locations within three regions
showing trend of increasing temperatures through the period 1880-2007. After Heron ef al. (2009).

Fiaure 2 Coral reef thermal stress levels.Data source: NOAA OISST. mapped at 1° resolution



May be we will have mechanistic models of corals in the future
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Figure 3.8.7 Global projections of the year annual severe bleaching conditions start for all reef locations under Representative Concentration Pathway (RCP)
8.5. After van Hooidonk et al. (2014).
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Figure 3.8.9 The year in which three temperature factors related to disease outbreak (host susceptibility, pathogen abundance, pathogen virulence) were all
projected to occur. After Maynard et al. (2015b).




Box 3.8.3 Reefresilience —local-scale assessment and management

Resilience is the capacity to resist and recover from disturbances. Relative resilience was 4
assessed for Saipan, Commonwealth of the Northern Mariana Islands (Maynard {2
et al., 2015a) based on: presence of bleaching resistant species, temperature . ‘
variability, coral diversity, coral recruitment, macroalgae cover, herlggore - ~7;
diversity, herbivore biomass, pollution, sedimgntatior12 7=~ "
and fishing access. The two sites with * ?;’*. o
the highest assessed resilience (humbered // > 1 '
1 and 2, at right) were located in the i
Bird Island Marine Sanctuary, a no-take <
marine protected area — a high level t’.}%"
of management protection for which

no further local management actions
could therefore be employed. Analysis g
of the two least resilient sites in Saipan .}
identified management actions that )
could reduce vulnerability of reefs.
At Achugao (#28), these actions were
the management, regulation and - =i
enforcement of fishery activities; plus—  /
bleaching monitoring and actions \ R
to support post-bleaching 13
recovery. At Tuturam (#29), any of a [
broad range of conservation activities
could enhance resilience including
reducing terrestrial run-off; increased
tourism outreach and stewardship; and the . < g
actions listed for Achuago. Including managers ©J. ana,d
and reef stakeholders throughout the resilience

assessment maximized support for the process and for the

implementation of identified management actions.
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Mean annual accumulation of anthropogenic carbon in water column 1780-2012 (mol m™ yr™")
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Figure 4.2.2 Estimated accumulation of anthropogenic carbon in the water column. Contours are every 0.043 mol m2 yr'. Adapted from control run of ocean
assimilation model of DeVries (2014).
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Figure 4.4.1 Climate change is
multifactorial. Ocean warming,
water column stratification,

and associated changes in

light penetration (increased
ultraviolet exposure), nutrient
availability, but also carbonate
chemistry (pH) all drive changes
in phytoplankton species
composition. Human population
pressures on the marine
environment through nutrient
pollution, ship ballast water
introduction of invasive species,
and marine food web alteration
from overfishing represent
additional stressors (adopted
from Hallegraeff, 2010).
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Figure 4.5.5 Multi-model ensemble projections of mean percentage changes in potential fish catch from South-east Asia by 2050, relative to recent catch

levels (1971-2000), under the RCP 8.5 emissions scenario (source: Cheung ef al., 2016a).



Global Monsoons and Ocean Triads
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Figure 4.5.6 Reconstruction of the history of yellowfin tuna dynamics and fisheries in the Western Indian Ocean using the SEAPODYM model and results

presented in Senina et al. (2015). The panels show the average spatial distribution of yellowfin tuna density for three different life history stages: a) larvae,
b)young fish caught by purse seine, and ¢) adults caught by longline. The locations of catches of young fish made by purse seine are shown with circles on

panel b) (largest circle radius corresponds to a catch of 200 tonnes) and the locations of catches of adults by longline are shown with circles on panel c)

(largest circle radius corresponds to a catch of 10 tonnes).




Ecosystem-Based Management: Global Monsoons to Microbes
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Figure 4.5.16 Differences in the quality of coastal fish habitats when catchments are managed well or managed poorly (source: Bell ef al.. 2011c).




Dead zones and HABs are a consequence of warming and global
monsoon changes (Extremes)
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Seasonality of the monsoons determine physical
processes and HAB species
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Global Monsoon is a Challenging Science Problem

Global Warming Impact on GM is full of
Uncertainties

All Global Warming is Local
All GM Impacts are also local
Land-Ocean Interactions in the Coastal Zone must be

a focus for Sustained Observational, Modeling,
Predictions and Projections



