Scale Interactions: Time and Space, Ocean and
Atmosphere

e |ITCZ Is a global tropical feature that also links
Walker and Hadley Cells.

* |TCZ is easy to see but not easy to define
except in the zonal mean

 ENSO and Warming affect the Hadley cell and
the ITCZ. What are the relations? Zonal
asymmetries?



What has been driving the downward trend in the ISMR?

a Trend in IMD precip. b Trendin CRU precip. mm day~" (112 year™)
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Figure 1| Summer monsoon precipitation trends for the years 1901-2012. Observed trend in precipitation (mm day ~' 112 year 1) in (a) IMD and (b)
CRU datasets, during June-September, for the years 1901-2012. Contours denote regions significant at the 95% confidence level.

Roxy et al. 2015, Nature Communications



Indian Ocean Warming?

SST trend (June-Sepl) °C (112 year)
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Figure 2 | Summer sea surface temperature trends for the years 1901-2012. Observed trend in mean summer (June-September) SST (°C 112 year )
over the global tropics during 1901-2012
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Correlation: WIO HadISST vs IMD precip.
| | |

Correlation: WIO ERSST vs CRU precip.
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Figure 3 | Correlation between western Indian Ocean sea surface temperatures and monsoon precipitation. Correlation between S5T over the western
Indian Ocean (WIO, 50-65°E, 5°5-10°N) and precipitation over the South Asian subcontinent, for (a) HadI5S5T and IMD precipitation, and (b) ERS5T and
CRU precipitation, for June-September 1901-2012. Contours denote regions significant at the 95% confidence level. The inset box includes parts of the
central Indian subcontinent where the weakening trend in precipitation is significant (c) Time series of S5T anomalies (°C, red) over western Indian Ocean
along with CRU (blue) precipitation (mm day‘U over central Indian subcontinent (80-90°E, 20-30°N, inset box in b), smoothed with a 10 year moving
average. Note that the correlation coefficient (r= — 0.34) between HadISS5T and CRU precipitation is estimated using non-smoothed time series. Kendall's
rank correlation test for the two variables provided a tau coefficient of — 0.3 (P<0.01, two tailed). Mann-Kendall test for the trend in the time series

provided a tau coefficient of 0.6 for SSTand — 0.2 for precipitation, both significant at 95% confidence level.



ITCZ — The Global Tropical Conveyor

a Semi-Permanent Pressure Systems: January
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b - Semi-Permanent Pressure Systems: July
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We should obviously be able to relate the ITCZ to rainy
seasons on land

)
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But also more specifically to the Global Monsoon

30N A G ‘ 30N

= — _ e : i

m— June, July, and August ITCZ _
=== December, January, and February ITCZ

180° 90°W 0° 90°E 180°

| Tropical monsoon [ Subtropical monsoon | Temperate-frigid monsoon



30° M

20° N

107 M

EC

10° S

200 5
30 s

307 M

20" N

10° N

ECQ

10° S

20" S

30° 5

(a) Africa

JFMAMI J ASOND
)y C. Pacific

JEFMAMI J ASOND
(@ Atlantic

J FMAMIJ AS OND

) Indian (c) W. Pacific

30° N 30° N
20° M 20 N
10° N 10° N =

EQ EQ
10° 5 10° S
20° 5 20° S
30° 5 30° S

JFMAMJI J ASOMND J FMAMI J ASOND
(e) E. Pacific (n 5. America

30° N 230° N
20° N 20° N
10° N 10° N

ECy EC
10° S 10° S
200 5 20 5
30° s e s

J FMAMJI J A S OND J FMAMIJI ASOND
m)y Global

30° N
20° N

1
. A mm day—

EC

10° S

20° 8

30° 5

J FMAMI J ASOND

o1 2 23 4 5 6 7 8 910111213



The ITCZ moves north over the maritime continent

to create seasonality
Mean 5-day Precipitation Rate (mm day")




What are the interactions between the components of the
Global Monsoon?Is the ISM boxed in by Orography?
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Timescales: We will not tlak much about diurnal cycle
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ISVs and ISV
Variability —

Does the ITCZ link
ISVs across basins?

1y averaged over 72°E-87°E and 10°N-25°N based on

station data over the Indian continent during the summer monsoon season for three vears,
1972, 1986, and 1988. Departure from the mean annual cycle (shown as the envelope) are
shaded. Seasonal mean rainfall for each year are also shown in the top-right corners.



Are the ISVs linked
some how?

AEWSs, MJOs,
MISOs
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‘] 5 "9 ‘3 3 9 ] 5 D. EMMANUEL POAN, ROMAIN ROEHRIG, FLEUR COUVREUX, AND JEAN-PHILIPPE LAFORE
F1G. 3. Time-longitude diagram of the 2006 JJAS intraseasonal anomalles averaged over CNRRFGANME o Frinc and CNIS, T, Fane
-2

12°-220°N: (a) PW (kg m °) and (b) 850-hPa meridional wind (m s Y. The black solid lines
materialize a slope of a9 m s~ ' velocity. C, L, B, and H refer to events referenced in section 3.

West African Monsoon Intraseasonal Variability: A Precipitable Water Perspective



ISVs in warm SSTs are small because convection smooths
them out.
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SSTs are an integrated response to momentum, heat, and
freshwater fluxes — but feedbacks can be critical
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Model biases persist in the Tropical Atlantic. But are
they local? Amplified locally? Or is it the ITCZ?

a CMIP5: annual mean along the equator b CMIP3: annual mean along the equator
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It is not a good idea to diagnose biases basin-by-basin
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Figure 2. Top: Differences in CCSM4 and observed precipitation (left) and SSTs (right). Bottom: Annual
cycle of CCSM4 and observed SSTs in the equatorial Pacific (left) and normalized NINO3.4 SST variance
for observations, CCSM3 and CCSM4. The double ITCZ persists despite a warm bias in the cold tongue.
The annual cycle of SST is weaker but ENSO variance is much stronger than observations even though
they are improved compared to CCSM3. (From Gent et al. 2011 and Danabasoglu et al. 2012).



Fig. 12 Latitude-time sections
of climatological precipitation
(shading; mm days ') and
surface wind stress (vectors:
reference 5 Nm 2 x 10 2}
averaged between (40-307W).
The panels show a GPCP
precipitation and WASWind
surface wind stress, b ERA
interim reanalysis, ¢ ensemble
MOST, d ensemble AN. The
orange contour lines in panels
b, ¢, and d show the
precipitation difference with the
GPCP climatology

Richter et al. 2011

ITCZ touching the
equator can trigger
zonal and meridional
modes.
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Not surprisingly,
East African
monsoon is also
unreliable in
CMIP5 models

Figure 1. Failure of CMIP5 models in simulation of ISMR trends. (a, ¢, d, f, h) The observed trend and (b, e, g, i) the GCM

simulated trends of ISMR (Figures 1a and 1b), ATT (Figures 1d and 1e), Northern box TT (Figures 1f and 1g), and

Southern box TT (Figures Th and 1i). The blue line represents the observed time series and the red line represents linear
trend (Figures 13, 1¢, 1d, 1f, and 1h). Lower and upper bound of the box represents 25 and 75 percentiles, respectively, and
the red line indicates 50 percentile (Figures 1b, 1e, 1g, and 1i). The green dot represents observed trend. Figure 1c shows
the northern and southern boxes used for ATT computation.
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Obviously this shows up as model bias at global scale
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Figure 1. Pattern correlation skill scores of the June-Sept. climatologies of precipitation and
850hPa wind for observations, CCMS4, three versions of CAM5.1 that differ in horizontal
resolution, and the CMIP5 models for the region 40°E-160°E, 20°S-50°N (Sperber, personal
communication, 2014).



But the tropics themselves have multiple timescales
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ITCZ — Cold Tongue Complex and Meridional Modes
But what is the relation between Zonal and Meridional Modes?

Pacific: MCA mode | Atlantic: MCA mode |
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EQOF Time—series, Mode 1 EQOF Time-series, Mode 1
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Zonal and Meridional Modes and the ITCZ in the
tropical Atlantic. What is the role of Regime Shifts?



Seasonal cycle of the ITCZ position in the Atlantic (+/- 1 StD)
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Composﬂes of anomalles of MAM SST and OLR (wmds overlaid) when MAM ITCZ North/South

x T e e s 7
v A s - o /o B
. P " ‘ ot
= - = = . i oo
I ' -~ o . ~
4 ! © P
3 =
s O ~ V. A - - Lo
PR T % .




(a) Withdrawal deviation

20
SD=7.192
| \ 7
AN
= Y| (| A
= )v‘l ‘ J' f "‘
- o S0 I L. [} /] 1
lececfavaa lfeen-e- Lecfdeccocsnnfdaces RY i b phbi \ ................ feoeeeeenn-
= ool L 1L A /1 '“X ' A A
n = W \ | —
e | WA W A i W TR S R A N L
' s 1 ‘|‘ 1 . f---4 f Y‘ !
- v '»/ l [ IH'K | | 1 J T | 1\'/ l. ‘I’ 1 ’-\-J.r |
= e 4 1/ ' 'O O
..................... 4{1T N A---;/----------l-r»-i-,-»-u--Lf---u--
\‘\ ”’ .I | / l/ | .l f vl
-10 — N H { v \; q
2 y | k]
|
'20 Illl'lll]lllllll!lllll1[['llll!IIIIIYIIIIIIIIIIIIII

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

(.

set from =

ion in on

Tati

Dey

20—

10} 1
B \ \,
S OI\\A V
IR
= -10¢ !

29650 1960 1970 1980 1990 2000 2010
Years

Returning to the
Indian
Monsoon:

Are the onset
and withdrawal
weather events?
How are other
timescales
related to the
onset and
withdrawal?



Relation between Onset and Northward Propagating Systems
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FIG. 1. (a) Gircles denote onset dates of ISM defined with daily TT index from 1982 to 2011.
Triangles denote onset dates of ISM based on simulated TT index (see text for details). The hori-
zontal line marks the mean of onset dates. (b) Differences between real and simulated onset dates in
(a). Solid circles denote the years with an onset date earlier than the mean onset date, and open circles
denote all the other years. The honzontal line marks the std dev of the differences m onset dates.



(a) ISVO vears
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FIiIG. 4. (a) Intrascasonal convective precipitation anomalies
(10 " kgm - s ': averaged from the ISM onset day to 10 days
before the onset day) for the ISVO vears. (b)) Asin (a). but for the
non-ISVO vears. () Differences in the intrascasonal convective
precipitation anomalies between the ISVO and the non-ISVO
vears. The intrascasonal signals are obtained with a bandpass filter
of 3090 davs. Significant differences at the significance level of 999
arcec hatched. Zero is shown with white contours.
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(a) ISVO years (b) non—-ISVO years (c) ISVO = non-ISVO
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FIG. 6. (a) The meridional and pressure velocities 1 day before the onset date averaged between 85° and 100°E in the ISVO years. (b) Asin
(a), but for the non-ISVO years. (¢) As in (a), but for the differences between the ISVO and non-ISVO years.
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FIG. 8. (a) As in Fig. 7a, but for the intraseasonal OLR anomalies (Wm ™ *; color shading), the positive intra-
seasonal SST anomalies (K; black contours), and GMS (kg m ™ *; white contours). (b) As in Fig. 7a, but for the
intraseasonal OLR anomalies (W m~ *; color shading), the positive intraseasonal SST anomalies (K; black contours),
and negative intraseasonal SST anomalies (kgm %; gray contours).
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FIG. 9. Intraseasonal wind anomalies at 850 hPa and intraseasonal SS§T anomalies on the onset
dates of ISM 1n the ISVO years.
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FiG. 1. Correlations in the intraseasonal band from 1998 to 2009 between downward (., and aSST'/at for the
(a) non-ISM and (b) ISM periods. The intraseasonal signals are obtained with a 5-90-day bandpass filter. Only
statistically significant correlations at the 99% confidence level are shaded. The black solid contours represent the
correlations larger than 0.3, with an interval of ().2. The mean effective sample size 15 426, and the threshold for the

99% confidence level is 0.1127 (Bretherton et al. 1999).
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FIG.2. Asin Fig. 1, but for correlations between upward Q} ;; + Qg and SST' in the intraseasonal band. The mean
effective sample size is 246, and the threshold for the 99% confidence level is 0.1482 (Bretherton et al. 1999).
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FIG. 3. (a) Std dev of intraseasonal precipitation (mmday™"') during the ISM from 1998 to 2009. The black
contours represent std devs larger than 15 mm day_'. (b) Ratios between the variance of the intraseasonal rainfall
and the variance of the total rainfall (% ). The black contours represent 55%.
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F1G. 4. Correlations in the intraseasonal band during May—August between (a) SST' and upward Qp; + Q% and
between (b) dSST'/ar and downward ().,. Only statistically significant correlations at the 99% confidence level are
shaded. The black solid contours represent the correlations larger than (.3, with an interval of (0.2, The black dotted
contours represent std devs of precipitation larger than 15 mm day_', with an interval of 10 mm day_'. The two
selected regions—WCI (12°-2(°FN and 65°-75°E) and NBB (15°-23°N and 85°-95°E )—are denoted by black boxes.
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FI1G. 5. Regional mean intraseasonal precipitation (mm da}'_'; black solid curves) and in-
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FI1G. 6. Hovmdéller diagrams of zonal mean intraseasonal latent heat flux anomalies (W m
color shaded), positive SST anomalies (°C; black solid lines), and positive wind anomalies
(ms™'; blue dashed lines) in (a) WCI and (b) NBB for the composite heavy precipitation
events. All the composites are significant at the 95% confidence level. Day (0 158 when the

heavy precipitation event begins.
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at 850 hPa. and all the composites are significant at the 95 % confidence level.
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F1G. 9. Asin Fig. 7, but for all terms in the moisture budget (kg m o dav ™ ') averaged from day 0 to day 2. All
terms are vertically integrated between 10N} and 300 hPa. The shown composites are significant at the 95%
confidence level.
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F1G. 10. Hovméller diagrams of the zonal mean intraseasonal AMSE (I kg™ " color shaded),

positive SST anomalies (°C; gray dashed lines), and precipitation anomalies (mm day™'; black
solid lines) in (a) WCI and (b) NBB for the composite heavy precipitation events. All the
composites are significant at the 95% confidence level. Day 0 is when the heavy precipitation

event begins.
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The differences in intraseasonal precipitation between the large- group and small-
rainfall groups. (b) Same as (a), but for the differences between the positive and
negative phases of the CIO mode. Units are 10> kgZ m= s1. The differences in the
areas with no hatch lines are statistically significant at a 95% confidence level.
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(a) The differences between the large- and small-rainfall groups in intraseasonal SST anomalies (colors,
unit: °C), intraseasonal wind anomalies at 850 hPa (black vectors, unit: m s'1), and vertical wind shear
(green vectors, unit: kg m=2 s1). For clarity of depiction in (a), the directions of green vectors are opposite
to the actual vertical wind shear. (b) The differences in intraseasonal PV anomalies at 850 hPa (colors,
unit: 102 PVU; 1 PVU = 10°° m? K s* kg'!) and intraseasonal wind anomalies at 850 hPa (black vectors, unit:
m s1). (c) Same as (b), but for the upper troposphere at 300 hPa. (d) The pattern of the positive CIO
mode. Reddish (bluish) color denotes the positive (negative) node of the SST mode. Solid (dash) contours
denote the positive (negative) node of the zonal wind mode. All colors and vectors shown in (a) — (c) are

significant at a 95% confidence level.
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(a) Mean SST (unit: °C) during the ISM (colors) and differences in intraseasonal specific
humidity at 500 hPa between the large-rainfall group and the small-rainfall group (contours).
The contours start from + 10 kg kg and the interval is 10* kg kg. (b) Mean OLR (colors;
unit: W m2) during the ISM and differences in the intraseasonal OLR anomalies between the
large-rainfall group and the small-rainfall group (contours). The contours start from £ 5 W m
and the interval is 10W m1. Solid (dashed) contours denote positive (negative) anomalies. All
differences shown with the contours are statistically significant at a 95% confidence level.
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(a) The scatter plot of the intraseasonal SST anomalies (averaged over 5°N to 5°S; 80°E to 90°E) and the
intraseasonal precipitation anomalies (averaged over 15°N to 24°N; 85°E to 95°E) for convection events
over western Indian Ocean. All anomalies are averaged between 5 days and 10 days after the central day
of the convection events, when the intraseasonal OLR anomalies over western Indian Ocean reach their
minimum. (b) Correlation coefficients between PC1 of the CIO mode and intraseasonal precipitation during
ISM, which are statistically significant at a 95% confidence level. The effective sample size is adjusted
following Bretherton et al. (1999), so that the influence of band-pass filtering on the significance test of
the correlation coefficient is removed.
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The correlation coefficients between intraseasonal precipitation and (a) intraseasonal SST
anomalies averaged over the central Indian Ocean (from 5°N to 5°S; 80°E to 90°E), (b) DMI, (c)
TNI, and (d) Nifio 3.4 Index. In order to retain the ISVs in all indices, daily data are used for the
calculations and no smoothing in time is applied. All correlation coefficients are smaller than
0.4, which are much less than the ones shown in Fig. 8b. All shown coefficients are statistically
significant at a 95% confidence level.
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Hovmoller diagram of intraseasonal SST anomalies in the tropics for the positive CIO
mode. Intraseasonal SST anomalies are averaged over 5°N to 5°S. Day O is the day with
heavy precipitation, i.e., the day when the intraseasonal rainfall is larger than the mean
plus the STD. There are 644 such days from 1982 to 2014. Negative (positive) days are
before (after) Day 0. Unit are °C.
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Sketch for the positive CIO mode and the associated atmospheric and oceanic anomalies.
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(a) The mean daily OLR averaged from 1982 to 2013 between 80°E and 100°E. The unit is W m2. The red
line marks the latitude with the minimum OLR for each day. The black line denotes the ITCZ which is
obtained with a 60-day running mean of the red line, so that the ISVs are largely removed. (b) The red
line and the black line are the same as the ones in (a), but zoomed-in during July. The colors represent
the northward-propagating MISO with the composite precipitation of the large-rainfall group. Units are
10 kg m2 s'1. Maximum precipitation over the northern BoB occurs on Day O (lower horizontal axis).
Negative days are before Day 0 and positive days are after Day 0. The blue line (vertical axis on the right)

is the principal component of the CIO mode (i.e., the first combined EOF mode).
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1 The CIO index (CI; blue line, i.e., the PC of the first combined EOF mode) and its

envelop (El; red line) obtained with the Hilbert transform.
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(a) KE'at 850 hPa, Jun-Sep (c) KE conv. at 850 hPa, Jun-Sep

Latitude
Latitude
o

-10

50 60 70 80 90 100 110 50 60 70 80 90 100 110
Longitude Longitude

(d) KE conv. at 850 hPa, Dec-Mar
' ' ¥ ' '

20
< < 10
=3 3
£ 0
gn] m
= _I_‘I,D
-20
_ 0 » n n n
50 60 70 80 90 100 110 50 60 70 80 90 100 110
Longitude Longitude

(a) Kinetic energy of ISVs (KE') at 850 hPa averaged over boreal summer from June to
September. (b) Same as (a), but averaged over boreal winter from December to March. (c)
and (d) Same as (a) and (b), but for [KE' x KE]. Units for KE' are J kg'! and units for
[KE' x KE] are J day ! kg
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Vertical profile of the mean [KE’ x KE] averaged between 5°N and 5°S during ISM (a; from
June to September), and during boreal winter (b; from December to March). Units are J
Day?! kg
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Solid line: El averaged from June to September in each year. Dashed line: Mean [KE’ X KE]
at 850 hPa, averaged over 75°E-85°, 5°N-15°N, and also averaged from June to September in
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SST differences during ISM (from June to September) between El Nifio and La Nina (a), and
between positive and negative IODZM phases (b). Units are °C. The differences in the hatched
regions are not significant at a 95% confidence level.
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Difference in precipitation between El Nifio and La Nifa. Units are kg m-2 day
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Mean [KE’ x KE] at 850 hPa during positive IODZM (a) and negative IODZM (b), and their
differences (c). Units are J Day! kg1. (d) Differences in precipitation between positive and
negative IODZM phases. Units are kg m2 day!. The differences in the hatched regions are
not significant at a 95% confidence level.
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Difference in winds (5u) at 850 hPa (vectors) and in 0%(5u)/dy? (units: 1011 m?s1)
between the positive and the negative IODZM phases. The differences in the hatched

regions are not significant at a 95% confidence level.
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Figure 1. Seasonal composite (June-July-August) of SST anomalies overlaid by surface wind vector anomalies for the

() cold and (b) warm AZM years.
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Figure 2. The difference (cold-warm) in seasonal (June-August)
composite of monsoon rainfall (mm month™ ') during AZM
years. The black box indicates the approximate area of core
monsoon region (18°N-28°N and 65°E-88°E) defined by
Rajeevan et al. [2010].
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Figure 3. Time series of (black line) frequency of monscon depressions in the
Bay of Bengal during June—August and (red line) Atl3 index averaged during
June-August ("2" is added to show it along with others) for the period
1975-2012. The green line indicates the least squares linear fit for the
frequency of monsoon depressions with slope —0.1 and intercept 4.8.



All interannual variability studies face sampling
limitations. Especially when it comes to ENSO

Table 1. Total Number of Monsoon Depressions Formed Under the Cold and Warm Years for All the AZM Years, AZM
Years Without ENSO Years, All the ENSO Years and ENSO Years Without AZM Years During the Study Period of 1975-2012°

AZM Cold AZM Warm La Nina El Nifio
(Pure AZM Cold)  (Pure AZMWarm)  (PureLaNifia)  (Pure EINifio)  Normal Years

Number of years g (6] 9(4) 7(3) 74) 14
Total depressions 2 (15) 122) 17 (10] 18 (5) 43
Depressions per season 3.3(25) 1.3 (0.5) 25(3.3) 26 (1.25) 3
Average life of a 4(44) 34) 2933) 31(3.2 29

depression in days

*The corresponding means of cold and warm events whose difference crosses 95% confidence level are marked in bold
(others are not significant even at 90%).
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Figure4. The genesis locations (red circle) and tracks of monsoon depressions (blueline) during (a and ¢) cold and (b and d) warm phases of AZM. Figures 4a and 4b
represent all the corresponding AZM years and Figures 4c and 4d represent all the corresponding AZM years without ENSO years,
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Figure 5. The genesic locations (red circle) and tracks of monsoon depressions (blue line) during (2 and ¢) cold and (b and d) warm phases of ENSO. Figures 53 and 5b
represent all the corresponding ENSO years, and Figures 5¢ and 5d represent all the corresponding ENSO years without AZM years,



Figure 6. Composites of seasonal average (June-August) of (2 and b) low-kvel (850 hPa) vorticity anomaly (10~ s ™) overlaid by the corresponding wind vector anoma-
lies, (d and &) vertical wind shear anomaly [rns'1], and (gand h| midlmg:oslamre (600 hPa) humidity anomaly (%) during the cold and warm phase of AZM years, Cold
minus warm composite of (c) low-level (850 hPa) vorticity anomaly (107" s ) overlaid by the corresponding composite of wind vector anomalies, (f) vertical wind shear
anomaly(ms 1], and (i) midtroposphere (600-hPa) humidity anomaly (%). In Figures 6c, &, and 6i, the pink and white contours indicate 80% and 90% confidence levels

as per two-tailed Student's t test, respectively.



a) Climatology — = 500 kg m's*
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Figure 8. Seasonal average of integrated moisture transport's (Kg m s

(a) dimatology and composite of its anomaly during (b) cold and (c) warm
phase of AZM.




= —— Figure 9. The correlation between the Atl3 index and different atmospheric

— ' . parameters for the simultaneous months of June-August (left) before and

0.6 (right) after removing ENSO signal from both the index and respective
fields. (a and b) Low-level (850 hFa) vorticity anomaly, (¢ and d) vertical

4
1N wind shear anomaly, (e and f) midtroposphere (600 hPa) humidity
2 Q 0.4 anomaly, and (g and h) integrated moisture transport. In Figures 9a-9f,
5°N the pink and white contours indicate 80% and 90% confidence levels as
per two-tailed Student’s t test, respectively. In Figures 9g and 9h, vectors
0.2 with 80% and 90% confidence levels are marked in brown and red line
25°N
vectors, respectively, with all else in light green.
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Figure 10. Bimonthly lead-ag correlations between the Atl3 index and the TT anomalies (troposphere temperature
anomaly averaged between 1000 hPa and 200 hPa) after removing the ENSO influence from both the fields for the period
1979-2012. The number on each subfigure indicates the lag or lead time of TTA with respect to Atl3 index in months. In the
figure positive correlation indicates the enhancement of TTA with respect to warm phase of AZM. All the shaded values
are statistically significant by 95% confidence level by Student’s ¢ test
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Figure 1. Differences of composites of rainfall between the cold and warm years of (a) AZM, (b) AZM only (excluding those co-occurring with

ENSO), (c) ENSO, and (d) ENSO only (excluding ENSO co-occurring with AZM). The two regions selected for the analysis, 1.e., central India

(15°-26°N and 76" —85°E: big thick box (black in online)) and the Western Ghats (10°-23°N and 72.5°-75.5°E: small light box (pink in online))
are shown in (b). The contours in black colour indicate 90% significance level.
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Figure 2. Spatial correlations between the anomalies of (a) SST in the Atl3 region and zonal winds, (b) western equatorial Atlantic (3°S—3°N and

40° -20°W; WEA) ronal winds and heat content, (¢) east equatorial Atlantic (3°5—3"N and 5°W - 10°E; EEA) heat content and SST, and (d) monthly

lead—lag correlations between anomalies of 55T in the Atl3 region and WEA zonal wind (black), WEA zonal wind and EEA heat content (dashes

in red) and EEA heat content and Atl3 (diamonds in blue). The zonal winds are taken at 850 hPa level. In spatial correlation plots {a—c), contours of

80 and 90% significance are indicated in light and thick (pink and black colours) in online, respectively, and in (d), the level of 90% significance is

indicated by a dashed horizontal (pink dashed in online) line. The correlations over land are masked in (a) to highlight the same over the ocean. The
black box in (c) indicates the Atl3 region.
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Figure 3. Evolution of composites of anomalies of western equatorial zonal wind (red; no symbol), eastern equatorial zonal wind (stars in red),

eastern equatorial heat content (squares in black), and 55T in the Atl3 region (circles in blue) during the warm (solid line) and cold (dashed line)

years of AZM. All the fields are normalized before compositing. The zonal winds are taken at 850 hPa level. The peaks of different fields plotted are
marked as vertical lines in their respective colours.



Correlation between the MAM ITCZ position and JJAS (Aug.-Sep.) rainfall over India

MAM ITCZ vs JJAS rainfall MAM ITCZ vs AS rainfall

I0°N — I0°H <

20°N — 205 <

10°M — 10N —
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Figure 4. Boreal summer (red) and winter (cyan) positions of 3 mm/day precipitation contours are shown
to highlight the multi-scale nature of the subseasonal to interannual processes within the IMME complex,
the associated land and ocean processes, and their interdependences. Key processes include Bjerknes
feedback in each of the tropical oceans and the sensitivity of precipitation to SST and terrestrial hydrology
in the tropical band, coupling strengths over land and the oceans as manifest in interactions between
lower tropospheric humidity, latent heat fluxes, SSTs, and soil moisture variability, and shortwave
feedbacks via the sensitivity of cloud amounts to precipitation variability.

Performance of Southwest Monsoon 2016 in India from June 1 to September 13
Actual rainfall Normal rainfall Excess/Deficit

in mm in mm

1111.9
902.1 895.6 1%

558.7 568.5 2%
545.9 617.9 -12%




Multi-Scale Interactions between MJOs and the ITF
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SSTs off Java and Sumatra hover around convective thresholds.
Can ITF push SSTs to trigger feedbacks?
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Can ISV in ITF produce coupled positive feedbacks?

(1951-97)
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F1G. 4. Simultaneous correlation of —IndoP with SST (shading) and surface winds (max vector is length 1.) for the (a)
MAM. (b) JJA. (c) SON. and (d) DJF seasons. A correlation of approximately 0.24 is significantly different than zero at

the 95% confidence level. assuming 46 degrees of freedom (ie.. assuming each year is independent).
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F16. 3. Seasonal correlation of Nifio-3.4 with SST and surface winds for (a) MAM, (b) JJA. (c) SON, and (d) DJE

Plotting convention is same as in Fig. 4.



ISVs in ITF can be generated from Both Indian and
Pacific Oceans
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Figure 1. MJO cycle of precipitation anomalies (CMAP data set). The life cycle is calculated from
MJO events in the November-April (northern hemisphere winter) season only. Composite maps
were calculated for each of the 8 RMM phases, and linearly interpolated for the intermediate days to
give a smooth cycle. In addition to the colour shading, a thick solid contour at 1 mm day-* outlines
the region of enhanced rainfall, and a thick dashed contour at -1 mm day-! outlines the region of
suppressed rainfall. These contours are reproduced in subsequent animations below to indicate the
main regions of MJO precipitation. Animations stolen from Adrian Matthews, UEA, UK
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Fig.5. Fof intraseasonal ST anomalies(2), intraseasonal SSH anomalies (b), and intraseasanal D20 (c). The unit of SST anomalies
i5+C, the unit of SSH anomalies is cm, and the wnit for D20 is m. The black contours in (a) are the barrier layer depths, starting
from 16 m with an interval of 2m.
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Fig.6. {a) Correlation between significantdaily PC1 (PC1 > 2) and the corresponding intraseasonal SST anomalies. (b) Correlation
between distinct daily PC2 (PQ2< -2) and the corresponding intraseasonal SST anomalies. (c) Correlation between significant
MO events (MJO index>2) and the intraseasonal SSH anomalies. The values in (b) are reversed, so that positive values rep-
resent sea surface warming and negative values represent sea surface cooling in both (a) and (k). Only statistically significant
correlations at the 95% confidence Jevel are shown.



Intraseasonal velocity (mfs)
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Fig 10. Intraseasonal mendianal currents at 50m (a) and 150'm [b)in the Lombok Strait. Thezerothday is the day with 2 peak
M0 index, which are marked with circles i Fig, 1.
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Fig. 11. Intraseasonal zonal currents at 50 mi(a) and 150 m (b in the Ombai Strait. The zeroth day is the day with a peak MJO
index, which are marked with circles in Fig. 1.
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Small errors in transports or
winds in the Indonesian Seas
can have large impacts on the
SWIO. We have no idea how
they may be amplified by
coupled feedbacks with IndoP



MJOs produce a seasonal-rectification and a
thermocline-intensified response
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Fig. 14 [a} Correlations betwes=n the S-day M} index and the monal velocity, 25 well as correlations bebwesn the S-day KO
imndex and ronal temperature adwection. (b Coerelations betwes=n the annuz] M0 index and the annmoal mean zonal vwelocity, as
wiell as comelations betwesn the annual M0 index and annoal mean temperature advection. The zomal velocity and temperatare
advection are averaped betwes=n 10F% and 15°5 ag 114°E. The correlabons are statisticallly significant at a confidence level of

95%.



ITF waters induce baroclinic instability in the
Southern 10

Barotropic energy conversion (%107 W/m™)
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Fia. 5. (a) Barotropic and (b) baroclinic energy conversions averaged over 20 yr and above the Fic. T Lonpmwl pms of baroclinic CErgy coavemons for Jlllllll'y. Aml‘ Jﬂly, and

thermocline in the SWIO. December. The contour interval is 1 x 107 W m . Regioas with positive values are shaded.



We can use the PV conservation equation to
calculate spatio-temporal scales of the Eady waves

(a) Scale of Max | nstabikty, Dec km
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Fic. 7. (a) Wavelength of the maximum instability (. __, = 39L,) and (b) the inverse of
the corresponding maximum growth rate (e, = 0.30/L,), both in December.
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Figure 8 SST variation, net surface heat flux. entrainment, and horizontal temperature
advection averaged within a rectangular region 6°5-7°5, 63°E-73°E, which are smoothed
with the one-month runming mean. Positive values mean that the upper mixed layer gain Fic. 11. Weekly mean SSTs {se color codes, °C) and surface velocities (vectors) during
heat. while negaive values mean that the upper mixed layer lose heat. 16-21 Nov of year 7, when the warm entrainment reaches its maximum.

Impact on MJO
genesis?

Depth (m)

1
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Fic. 9. Temperature variations (see color codes. K month™") and mixed layer depth (solid
line). averaged in the region of 6°-7°S, 63°-73°E.



Both SWIO and SEIO have strong thermocline-SST interactions with
potential for coupled feedbacks — via MJO genesis and maritime
rainfall.

1

0.5

_;:‘**MWMWWW "‘W

ww W :

-1 i I I L Il '] ] 1
Tiar 19 i 11 Tiir 12 Yiudr 13 Yoiadir 14 Tiar 15 ar 18 Yaar 7 Viuiar 18

Fra. 12. Intraseasonal entrainment (solid line, K month—') and intraseasonal SSHAs
{dashed line 10 cm) at 8°5, 63°E for 18 yr.
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Fucz. 13 Correlations between Tthe intraseasonal entrainment and the intraseasonal S5HAs,
which are statistically significant at the 95% confidence level.



The pathways in the Indonesian Seas are like valves that determine
the properties of waters being injected into the Indian Ocean which in
turn determine the ISVs in the southeastern and southwestern Indian
Ocean.

5

; : Maritim
Tropical Indian Ocean ContineZ{

1. Atmosphere forcing on the ocean;

2. Westward propagation in the ocean;

3. Ocean eddy in the upper mixed layer;

4. Ocean feedback to the atmosphere;

5. Eastward propagating MJOs in the atmos.



Model Biases may be amplified if these links are missing
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Fig. 8 Seasomal (JTAS) mean S5T (*C) from a SODA and b CFSv2 and DX {m) from ¢ SODA and d CFSv2



More Paleo studies are needed to link the global monsoon
components
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Feedbacks

From the
Global
Monsoon
To ENSO
Remain
To be
Fully
under-
stood
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Especially considering peak phase of ENSO vs monsoons
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