Possible Improvements of Multiscale Indian Summer Monsoon through Embedded Regional Modelling

> Dhrubajyoti Samanta Saji N Hameed Jin Dachao

University of Aizu

WCRP-JNU Training School on Monsoon Variability in Changing Climate

Background

- Growing recognition of monsoon as a complex systems (Sikka and Gadgil, 1980; Suhas et al., 2011)
- A framework for understanding monsoon interannual variation as an multiscale system has been developed (Goswami et al., 2006)

Objectives

- Objective identification of multiple scales and their validation in simulations
- Evaluate whether NCEP CFSv2 captures important scales of monsoon variability correctly
- Using WRF as an intermediate tool to explore factors relevant to scales of ISMR variations of interest to this project

Candidate model of Monsoon Mission: NCEP CFSv2

Annual cycle of rainfall

SW monsoon

Aphrodite + TMI

NCEP CFSv2

CFS + WRF

Similar improvements in Central India rainfall

Comparison over CI region

PDF of daily rainfall intensity is shown

Multiscale ISMR rain regimes subseasonal scale

Modulation of synoptic activity by Monsoon ISO

 Collectively account for 50% of the total ISMR rainfall (Sikka 1977, 2006)

Goswami et al., 2003

How ENSO induced large scale circulation affects low pressure systems during Indian summer monsoon period?

- Tracks identified based on ERA Interim 6 hrly 850 hPa rel vorticity data
- IOD years excluded

Summary

- A new SOM based framework for identifying and assessing ISM features in better way
- A series of 7 year-long embedded regional simulations using NCEP CFSv2 T382 free run as LBCs has been carried out
- A set of experiments with Linear Baroclinic Model (LBM) for understanding ENSO-monsoon teleconnection
- Studied effect of ENSO circulation in monsoon low pressure systems

Extra slides

Multiscale IMR regimes annual scale Follows evolution of SW Monsoon Late winter/ Early spring NW 10 10 30N Rapid evolution Follows evolution over Central India of NE Monsoon Jul-Aug Data source: Aphrodite

Multiscale IMR rain regimes

- Monsoon rain rich in scales of variability
- Central Indian rain has several unique features
 - sharp evolution during the middle of the summer monsoon
 - intense rainfall events associated with monsoon lows and depressions
 - dominantly interannual
- Western ghat rain
 - Evolution of rain closely related to SW monsoon
 - intense rainfall events
 - dominantly decadal
 - dominantly quasi-biweekly

Multiscale ISM variations in the NCEP CFSv2 T382 runs and embedded simulations

Model Data and Embedded experiments

NCEP CFS v2 T382

- Coupled (free) runs spanning 20 years
- Embedded WRF simulations (CFS+WRF) with above as LBC
 - 5 Experiments, each for a 7-year period corresponding to model years 1999-2005
 - 1. No SST
 - 2. Daily updated NCEP CFS SST
 - 3. Coupled to 1D mixed layer Pollard, Rhines and Thompson (1972) spatially uniform, time-invariant depth of 50m
 - 4. Same as above, but MLD from observations and varies on monthly scale

Physical Schemes for the embedded simulations

- Cumulus: Betts-Miller-Janjic scheme
- Longwave Radiation: RRTMG scheme
- Shortwave Radiation: RRTMG shortwave
- Land surface: unified Noah land-surface model
- Surface Layer: Monin-Obukhov (Janjic Eta) scheme
- Boundary layer: Mellor-Yamada-Janjic (Eta) TKE scheme
- Microphysics: WSM 3-class simple ice scheme