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ABSTRACT

Using Monte Carlo simulations, several methods for detecting a trend in the magnitude of extreme values are
compared. Ordinary least squares regression is found to be the least reliable method. A Kendall’s tau–based
method provides some improvement. The advantage of this method over that of least squares diminishes when
the sample size is moderate to small. Explicit consideration of the extreme value distribution when computing
trend always outperforms the above two methods. The use of the r largest values as extremes enhances the
power of detection for moderate values of r; the use of larger values of r may lead to bias in the magnitude of
the estimated trend.

1. Introduction

Changes in climate variability and, in particular, in
the intensity and frequency of climate extremes are like-
ly to affect society more strongly than changes in the
mean climate (Katz and Brown 1992). This observation
has motivated many studies of extremes in the climate
of the twentieth century (e.g., Groisman et al. 2001;
Iwashima and Yamamoto 1993; Kunkel et al. 1999;
Zhang et al. 2001a,b) and in the climate projected for
the twenty-first century (e.g., Zwiers and Kharin 1998;
Kharin and Zwiers 2000; Meehl et al. 2000).

Changes in extremes can be assessed by identifying
changes in either frequency or intensity. Keim and
Cruise (1998) describe a method for estimating a trend
in the frequency of extreme events that is based on a
simplified test introduced by Cox and Lewis (1966). Frei
and Schär (2001) describe a closely related technique
that uses a binomial distribution to model the counts of
rare events and a logistic regression to estimate trend
in the counts. Many other studies have investigated
changes in the magnitude of the extremes. Some as-
certain changes in return values by fitting separate ex-
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treme value distributions in different periods (e.g.,
Zwiers and Kharin 1998; Kharin and Zwiers 2000); oth-
ers attempt to compute linear trends in extreme values
(e.g., Kunkel et al. 1999; Zhang et al. 2001a).

The objective of this paper is to compare the per-
formance of several methods for detecting significant
linear trends in the magnitude of extreme values. We
consider methods that utilize only the block maxima
from the available time series of observations and
methods that utilize the available data more effectively
by modeling trends in the r largest observations per
block, where r is greater than 1. The trend estimation
methods are explained in section 2. These methods are
evaluated by means of a Monte Carlo experiment, the
design of which is described in section 3. Results are
given in section 4, followed by conclusions and dis-
cussion in section 5.

2. Methods

Under fairly general conditions, the distribution of
the maximum of a sample of identically distributed var-
iables converges to one of three types of extreme value
(EV) distributions as the length of the sample goes to
infinity. This result, which is known as the ‘‘three types
theorem,’’ was originally demonstrated by Fisher and
Tippett (1928) and later was presented in a more general
setting by Gnedenko (1943). The three types are the
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Gumbel or EV-I distribution (Gumbel 1958), the Fréchet
or EV-II distribution, and the Weibull or EV-III distri-
bution.

After parameterization, the three distributions can be
generalized as the generalized extreme value (GEV) dis-
tribution, with the distribution function

exp{2exp[2(y 2 m)/s]}, j 5 0 (EV-I)
1/jG(y) 5 exp{2[1 2 j(y 2 m)/s] }, j . 0, y # m 1 s /j (EV-II) (1)


1/jexp{2[1 2 j(y 2 m)/s] }, j , 0, y $ m 1 s /j (EV-III).

The parameter j is referred to as the shape parameter;
m and s (.0) are the location and scale parameters,
respectively.

The rate of convergence to these asymptotic distri-
butions is affected by the shape of the upper tail of the
distribution of the sampled random variable. For ex-
ample, all distributions in the so-called exponential fam-
ily belong to the ‘‘domain of attraction’’ of the Gumbel
distribution, meaning that the distribution of the max-
imum of a large sample from a distribution in this family
eventually converges to the Gumbel distribution as the
sample becomes large. However, the rate of convergence
is not the same for all members of the family, with much
faster convergence for an exponentially distributed var-
iable (Leadbetter et al. 1983) than for other members
of the exponential family such as the Gaussian distri-
bution.

A time series (y1, y2, . . . , yn) with a linear trend can
be represented by

y 5 a 1 bt 1 e ,t t (2)

where e t denotes a stationary noise process, and a and
b are regression parameters. The magnitude of trend is
computed by estimating coefficient b. A linear trend is
said to have been detected if the estimate b̂ is signifi-
cantly different from zero. When et follows a symmetric
distribution with finite variance, b can be conveniently
estimated by the method of least squares (OLS). If e t

is a Gaussian white-noise process, the statistical signif-
icance of the trend can be assessed using the Student’s
t test. Appropriate modifications can be made to the test
if e t is not white (e.g., von Storch and Zwiers 1999).
Extreme values do not fall into a symmetric distribution,
and thus it follows that least squares is not likely to be
the most reliable method for identifying trends in the
series of extreme values. A distribution-free, Kendall’s
tau–based estimator (Sen 1968) has frequently been
used to estimate trend (Kunkel et al. 1999; Lins and
Slack 1999; Zhang et al. 2001a,b), and the Mann–Ken-
dall test is used to assess its statistical significance. A
more rigorous method would be to model the extreme
values with the method of maximum likelihood, with
time being a covariate (e.g., Smith 1989; Coles 2001;
Katz et al. 2002). We will consider all three methods

for estimating trends in extremes (OLS, nonparametric
Kendall’s tau, and maximum likelihood) in this paper.

a. Kendall’s tau

Without loss of generality, we assume that t1 # t2

# . . . # tn are the sampling times. Let

N 5 d(t 2 t ), (3)O j i
1#i,j#n

where

1 if x . 0,
d(x) 5 (4)50 if x 5 0.

Then, among all values of (t j 2 ti), 1 # i , j # n, only
N values are nonzero. Consider the set R of the N distinct
pairs (i, j) for which tj . ti and define

W 5 (y 2 y )/(t 2 t ), (i, j ) ∈ R . (5)i j j i j i

We arrange the N values in (5) in ascending order of
magnitude and denote the kth smallest value by Wk (k
5 1, 2, . . . , N). The Kendall’s tau estimator of b is the
median of Wk, or

W if N is odd,(N21)/211b̂ 5 (6)5(W 1 W )/2 if N is even.N /2 N /211

That is, the trend is the median of all possible trend
estimates obtained from pairs of observations obtained
at distinctly different observing times. This estimator is
statistically robust and is unbiased. When the time steps
are equally spaced and random variables yi are inde-
pendent, this estimator has an asymptotic relative effi-
ciency that is never less than 0.864 with respect to the
least squares estimator (Sen 1968). The asymptotic rel-
ative efficiency is defined as the ratio between the as-
ymptotic variance of the OLS estimator and that of the
Kendall’s tau estimator. The statistical significance of
the Kendall’s tau trend estimate can be assessed using
the Mann–Kendall test (Mann 1945; Kendall 1955). Yue
et al. (2002) showed that the power of the Mann–Ken-
dall test in detecting significant trends depends on the
underlying distribution.
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b. Generalized linear regression

The likelihood function for the GEV distribution (1)
is given by

1/jn y 2 mi21L 5 s exp 2 1 2 jP 1 2[ ]si51

(1/j )11y 2 mi3 1 2 j , (7)1 2s

where y1, y2, . . . , yn are n extreme values. These are
generally block maxima taken as the largest values from
blocks of samples of the parent distribution (e.g., annual
maxima of daily precipitation). The method of maxi-
mum likelihood can be used to estimate the three pa-
rameters of the GEV distribution by minimizing
2log(L). Covariates can be introduced into the GEV
model by, for example, expressing the location param-
eter as

m(t) 5 a 1 bt. (8)

This allows for the estimation of linear trend in the
location parameter (see, e.g., Smith 1989). Trend can
also be considered for the scale parameter, typically with
an equation of the form

log[s(t)] 5 u 1 wt. (9)

Note that this formulation ensures that the scale param-
eter remains positive. Trend in the shape parameter j is
not considered in this study because we decided to avoid
the complications that arise from allowing all three GEV
parameters to vary in time. We assume that it is not
likely for there to be significant change in the shape of
the tails of the kinds of variables that are typically con-
sidered in climate studies over the period of record (less
than 100 yr) that is ordinarily available for analysis.
Situations in which the tail does lengthen, or shorten,
modestly relative to the main body of the distribution
can be dealt with approximately by varying the scale
parameter.

The trend in the extreme values can be estimated by
choosing a, b, and s, or u and w, to minimize 2log(L).
The statistical significance of the trend is evaluated by
using a likelihood ratio test to compare a model with
trend with one that does not include trend. Let M0 be
a model for the extreme values with no trend (i.e., b 5
w 5 0) and let M1 be a model with trend. Also, let l1

and l0 be the log likelihoods under the models M1 and
M0. When trends are not present, the log likelihood ratio
statistic (LRS)

1 0T 5 2(l 2 l ) (10)

is asymptotically distributed (Cox and Hinkley 1974),2xq

with q being the difference in the number of free pa-
rameters in the two models. We reject hypothesis M0

(there is no trend) at significance-level a if T is bigger
than the upper-a point of the distribution. Further2xq

details can be found in Coles (2001). In the case of two

parameter models, we are most interested in the exis-
tence of trends in the parameters that lie in the same
direction. However, we note that it is possible for there
to be opposing trends in the location and scale param-
eters that result in a very small trend in the extremes.

Note that the results of the likelihood ratio test are
not always directly comparable with those of the OLS
and Kendall–Mann tests. The latter are designed to de-
tect change in the mean value of the extremes, which
is given by m(t) 1 s(t)[1 2 G(1 1 j)]/j when the
extremes have a GEV distribution with location and
scale parameters that may contain trend. The LRS, on
the other hand, is designed to detect change in one or
more of the parameters of the GEV distribution, either
individually or in combination. These two types of tests
do ask equivalent questions when it can be assumed that
the scale and shape parameters are constant in time.

c. The r-largest method

As noted above, it may be possible to improve on the
trend estimates made from block maxima by using mul-
tiple extremes per block, thereby utilizing the available
record more completely. For example, annual maximum
daily precipitation may be extracted from daily or even
hourly observations, and, thus, fitting an extreme-value
distribution with annual maximum daily precipitation
may discard some potentially useful information about
precipitation extremes. One possible solution is to use
the r-largest values in a block for small values of r.
This is usually called the r-largest method.

By proper scaling, the r-largest-order statistics model
gives a likelihood function with parameters that cor-
respond to those of the GEV model for block maxima
but that incorporates more of the observed extreme data.
The likelihood function (7) for the r largest values taken
for every block becomes

1/jn (r)y 2 miL 5 exp 2 1 2 jP 7 5 6[ ]si51

(1/j )11r ( j )y 2 mi213 s 1 2 j , (11)P 8[ ]sj51

where is the jth-order statistic in block i. Trend in( j )yi

the extreme values can then be estimated by replacing
m and s with (8) and (9), respectively. Relative to a
standard block-maxima analysis, the interpretation of
the parameters is unaltered, but precision should be im-
proved by the inclusion of extra information. The power
of detection of trend would also improve, it is hoped.

The choice of r is a classic bias–variance trade-off:
a small value of r results in a smaller sample of extremes
and, thus, more uncertain parameter estimates and pos-
sibly lower power of detection trends. On the other hand,
the GEV model is an approximation that, strictly speak-
ing, holds only in the asymptotic limit. Errors in the
approximation are likely to be more apparent for large
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values of r. These errors will be especially apparent in
the far tails of the distribution that lie beyond the range
of observations contained in the sample of extremes
(e.g., in applications for which it is necessary to estimate
long-period return values from short samples). In prin-
ciple, r should be chosen to be as large as possible
without inducing large biases in the properties, such as
return values, that are to be estimated from the fitted
distribution. This is, to a large degree, a matter of judg-
ment. The accuracy of the fit for a particular r within
the available sample can, and should, be examined using
standard diagnostics such as probability and quantile
plots.

In this study, we compare estimated return values at
20, 100, 1000 yr obtained by fitting r-largest models
with r ranging from 1 to 30 to simulated samples con-
taining 50 or 100 yr of data as described below. Note
that the GEV model is a special case of the r-largest
model (r 5 1). We also test performance by fitting these
models to observed precipitation at 200 stations located
in a 108 latitude 3 108 longitude box (408–508N and
808–908W).

Note also that daily weather persists. For example,
days with precipitation tend to occur in clusters (Katz
et al. 2002). This can be a cause of concern when a
relatively large r is used and if heavy rain concentrates
in a particular season. Thus, it may be appropriate to
‘‘decluster’’ the data (Todorovic and Zelenhasic 1970).
Under such a scheme one would select the r largest
values in different clusters: for example, to select ex-
treme daily precipitation separated by several days and
to choose extreme high temperatures in different hot
spells.

3. Monte Carlo simulation

Our Monte Carlo simulation experiment was designed
to mimic a real situation that a climatologist might en-
counter in which the objective is to estimate trend in
annual extremes. In many places of the world where the
annual cycle is strong, annual extremes may only occur
in a particular season. Thus, the annual extremes may
actually be drawn from a seasonal sample that represents
a period much shorter than 1 yr. For this reason, we
also considered seasonal extremes. We produced 1000
simulations of daily precipitation (using an exponential-
family distribution) with predetermined trends in the
extremes. Each simulation represents 50 or 100 yr of
daily precipitation data. A similar experiment was con-
ducted with simulated Gaussian-distributed temperature
data. Results were very similar to those reported below.

The daily precipitation time series are simulated in
two steps. The first step is to simulate the frequency of
precipitation days for each year (season). To produce a
realistic level of interannual variability, we used a nor-
mal distribution, with its mean and standard deviation
computed from observational data, to simulate the num-
ber of wet days for each year (season). The second step

is to simulate the precipitation amounts for the wet days.
We use an exponential distribution for this purpose, be-
cause 1) this distribution has been used to simulate daily
precipitation amounts in a popular weather generator
(Richardson 1981) and 2) the true trend in the mean of
simulated extremes is then easily prescribed, as shown
below.

The cumulative distribution function of an exponen-
tial random variable X is given by

0 if x # 0,
F (x) 5 (12)X 2x /l51 2 e if x . 0.

Note that we follow the notational convention used in
the statistical literature, where upper-case symbols des-
ignate random variables, and the corresponding lower-
case variables indicate realizations of those variables.
The mean and variance of X are

2 2m 5 l and d 5 l , (13)x x

respectively. Let X1, . . . , Xm represent m simulated daily
precipitation amounts in a year. For convenience, they
have been simulated so that they are independent, iden-
tically distributed, exponential random variables. Let Y
be the annual maximum daily precipitation, that is, the
maximum of {X1, . . . , Xm}. Then, Y , y if and only
if Xi , y for each i 5 1, . . . , m. Using independence,
we obtain that

m

mP(Y , y) 5 P(X , y) 5 F (y; l)P i
i51

2y /l m 2y /l5 (1 2 e ) ø exp(2me )
2y /l1l log(m)/l 2(y2m)/l5 exp[2e ] 5 exp[2e ].

(14)

This is the Gumbel distribution function with a location
parameter m 5 l log(m) and a scale parameter s 5 l.

The mean of the Gumbel distribution described above
is given by

m 5 m 1 gl 5 l log(m) 1 gl,y (15)

where g is an Euler’s constant (g ø 0.577). It is clear
that the mean can be affected by trend in both the lo-
cation and scale parameters. A trend in the number of
wet days in a year (m) would result in a trend in the
location parameter whereas a trend in the intensity of
precipitation (l) would cause a trend in both the location
and scale parameters of the Gumbel distribution. If there
is no change in the frequency of precipitation events
(i.e., if n is fixed), the trend in the mean of the extremes
is only a function of the trend in the intensity. For the
sake of simplicity, we consider only such trend, but we
note that in the real world there is observational evi-
dence of changes in both frequency (e.g., Zhang et al.
2001b) and intensity (Karl and Knight 1998).

The baseline frequency and intensity parameters used
in our simulation study were estimated from a Canadian
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FIG. 1. The rate at which a statistically significant trend was detected at the 5% level in 1000 simulations. Results are shown for samples
of size of (left) 50 and (right) 100 yr. The nominal 5% significance level is indicated by the gray line. The 95% acceptance region for testing
the null hypothesis that the rejection rate is equal to the nominal level is given by the dashed gray lines. ‘‘OLS’’ and ‘‘Kendall’’ indicate
linear least squares fit and Kendall’s tau–based estimator results; ‘‘gevpmu,’’ ‘‘gevpsig,’’ and ‘‘gevpmupsig’’ represent linear trends being
considered in the location parameter, in the logarithm of scale parameter, and in both location parameter and the logarithm of scale parameter
of the GEV distribution, respectively. Only annual maximum daily values were used in these five cases. The labels ‘‘rlar2pmu’’ and
‘‘rlar2pmupsig’’ indicate results from the use of the r-largest method with r 5 2, and trend in the location parameter, and location and log-
scale parameters, respectively.

station (Kemano) located at 54.058N, 128.638W in Brit-
ish Columbia. The annual number of wet days at this
station has a mean of 123 days and a standard deviation
of 27 days. The average precipitation intensity is 12 mm
day21. The average annual maximum daily precipitation
is about 65 mm when computed using (15). We use the
summer data for the seasonal time series. The average
number of wet days in this case is 31 with a standard
deviation of 5 days. The precipitation intensity is 7 mm
day21. This results in a long-term mean seasonal max-
imum daily precipitation of about 28 mm. Linear trends
of various magnitudes were imposed on the intensity
parameter l. The resulting trends computed from (15)
are considered to be the ‘‘true’’ trends in our evaluation
of trend detection methods.

Three statistics have been used to aid comparison
among the different methods. They are the bias, root-
mean-square error (rmse), and variance. The bias is the
difference between the true trend and various trend es-
timates described above. The rmse is the square root of
average of bias squared. Variance is the standard de-
viation of trend estimate in a particular simulation.

4. Results

For the annual series, the number of times that a
statistically significant trend was detected at the 5% lev-
el in 1000 simulations is plotted in Figs. 1 and 2. Results

are displayed for n 5 50 and 100 and for the different
methods discussed in section 2. Note that Fig. 1 includes
results for the r-largest method when r 5 1 and r 5 2.
For clarity, comparable results for r 5 5 are displayed
in Fig. 2. When using the r-largest method, we consid-
ered trend in the location parameter with a trend de-
scribed by (8) and in the scale parameter as in (9). We
also considered trend in both the location and scale pa-
rameters, because the simulated extreme values time
series would have linear trends in both parameters.

When there is no trend in the time series, the number
of times a significant trend is detected by the various
methods is generally less than the nominal level of 5%.
Exceptions occur for some of the r-largest methods
when r . 1 and when trends are allowed in both location
and scale parameters. Those methods detect trend sig-
nificantly more often than 5% of the time when none
is present. We examined their results in detail and found
that ‘‘significant’’ trends of opposite sign were often
identified in the location and scale parameters, yielding
almost zero trend in the mean. This finding suggests
that caution is needed in interpreting results when a two-
parameter-trend model has been used.

The linear least squares (OLS) trend estimates have
the largest variance among the methods considered. The
power of trend detection obtained with this method is
also generally low. Both effects are the result of vio-
lating the distributional assumption that underlies the
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FIG. 2. As Fig. 1, except ‘‘rlar5pmu’’ and ‘‘rlar5pmupsig’’ indicate results from the use of the r-largest method with r 5 5, and trend in
the location parameter, and location and log-scale parameters, respectively.

OLS method. The Kendall’s tau–based method is found
to be more powerful than the OLS method when the
sample size is large (100). The r-largest methods with
trend in the location parameter consistently outperform
both the OLS and Kendall methods, suggesting the use-
fulness of doing proper modeling. The number of de-
tections by the r-largest method increases with r as can
be seen by comparing Fig. 1 and 2. This emphasizes
the importance of making better use of the information
available in the data. The importance of larger sample
sizes is undeniable: the power of detection is always
larger even when the magnitude of trend is halved if
the sample size is doubled.

We expected that the r-largest method with trend in
both parameters would perform the best because the
trend imposed in the simulation data should result in
trend in both the location and scale parameters. Our
simulations indicated that these ‘‘better’’ methods were
not as powerful as the methods that only consider trend
in the location parameter, however. This suggests that
the potential gain in the power of detection from in-
cluding a trend in scale parameter is lost because of the
need to estimate an extra parameter. Another possibility
is that, in the case of the scale parameter, the signal-to-
noise ratio may be too small to allow reliable detection.
It is also possible that (9) may not approximate the
prescribed linear trend in the scale parameter well
enough. This may not be the main reason, however. We
replaced (9) with log[s(t)] 5 u 1 w t1/2 and log[s(t)] 5
u 1 w t1/4 and did not gain improvement in the power
of detection. The rate of detection should not be used
as the sole criterion in selecting a method for trend
analysis of extremes, however, because a more powerful

method may also have a larger bias (i.e., reject the null
hypotheses of no trend more frequently than expected
when there is, in fact, no trend).

The biases, variances, and root-mean-square errors of
the trend estimates from the different methods for n 5
100 are presented in Table 1. In agreement with Fig. 1,
the variance and rmse of the OLS estimates are larger
than those of Kendall’s tau. The variances of the esti-
mate made with the r-largest method with trend in the
location parameter only are smaller than these of OLS
and Kendall’s tau, and the bigger the r is, the smaller
the variance is. However, the rmse are not always small-
er, because the trend estimated by those methods only
reflects changes in the scale parameter and, hence, is
biased toward smaller values by design. The bigger the
r value is, the bigger the bias is. The r-largest estimates
with trend in both location and scale parameters have
substantially less bias, but this comes at the cost of larger
variance that may actually increase the rmse.

The results for the seasonal series are similar to those
for annual series, except that the differences among the
GEV models, Kendall’s tau, and linear least squares are
smaller. The difference between seasonal and annual
extreme results is likely due to the difference in the
intensity of the precipitation extremes that were simu-
lated on these two time scales. The somewhat less in-
tense summer extremes, coupled with the shorter sum-
mer sample, result in trends that are somewhat less de-
tectable. As a result, the simulations discriminate be-
tween the different methods less strongly.

The mean 1000-yr return value estimate obtained
from 1000 simulations of the series annual extremes in
which there is no trend is almost identical regardless of
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TABLE 1. Comparison between biases (bias), variances (var), and root-mean-square errors (rmse) of linear trends, calculated by fitting
different models to 1000 simulated samples of size 100. The models are identified with the same label as in Fig. 1. Unit for bias, var, and
rmse are millimeters. Trend is represented by percentage change in the mean over a 100-yr period.

Trend OLS Kendall gevpmu gevpmupsig rlar2pmu rlar2pmupsig rlar5pmu rlar5pmupsig

0 Bias
Var
Rmse

0.2
5.1
5.1

0.0
4.5
4.5

0.1
4.0
4.0

0.0
5.0
5.0

0.0
3.0
3.0

0.2
4.5
4.6

20.2
2.2
2.2

0.1
4.8
4.8

10 Bias
Var
Rmse

21.5
5.5
5.7

21.4
5.0
5.2

22.0
4.9
5.2

21.0
5.7
5.9

22.3
3.4
4.1

21.4
5.0
5.3

23.3
2.3
4.0

21.6
4.5
4.8

20 Bias
Var
Rmse

0.0
6.1
6.1

0.2
5.4
5.4

21.2
5.0
5.3

0.9
5.9
6.0

22.6
3.6
4.5

1.1
5.2
5.3

24.3
2.5
5.0

0.4
5.0
5.0

30 Bias
Var
Rmse

0.3
6.3
6.3

20.2
5.4
5.4

21.9
5.3
5.6

0.8
6.1
6.2

23.8
3.8
5.4

1.9
5.5
5.9

26.5
2.5
7.0

1.4
5.0
5.3

40 Bias
Var
Rmse

20.1
6.3
6.3

21.0
5.4
5.5

23.8
5.7
6.9

0.7
6.2
6.2

26.7
4.0
7.9

2.1
5.8
6.2

28.8
2.9
9.2

1.5
5.2
5.5

whether r 5 1 (GEV) or r 5 30. For the simulated
seasonal data, the 100-yr return values drop quickly for
r . 10. The mean 1000-yr return value is about 5%
smaller than that obtained from the GEV model when
r . 5. This suggests that choosing r 5 5 is probably
appropriate for seasonal and annual extremes when
characteristics of the extremes are similar to those of
the simulated extremes, and a larger value of r may be
appropriate for annual extremes.

In agreement with our findings from the simulated
data, the mean 200-station 100-yr return value derived
from the annual maxima of observed daily precipitation
varies less than 5% when r ranges from 1 to 30. How-
ever, the mean 200-station 1000-yr return value is about
10% smaller than that obtained with the GEV model,
even when r 5 2. This suggests that the behavior of
the observed extremes is somewhat different from the
simulated extremes. Clearly, r should be selected con-
servatively if the objective is to estimate return values
for periods that are substantially longer than the period
of record.

5. Conclusions and discussion

We have compared the ability of several methods to
detect trends in extreme values. Our comparison was
made with the aid of a Monte Carlo simulation exper-
iment. The extreme values we simulated contain linear
trends in both the location and scale parameters.

The OLS method, which requires the residual time
series to be normally distributed, has very poor power
because of the violation of the distributional assumption.
A Kendall rank correlation–based method, which does
not require a distributional assumption, has been fre-
quently used as an alternative to OLS in the literature.
It outperforms OLS only when the sample size is large.

A generalized linear regression method, which ex-
plicitly incorporates trend into the parameters of the
generalized extreme value distribution, has stronger

power of detection when compared with the OLS and
Kendall methods. The GEV method that considers trend
only in the location parameter does a better job than a
method that considers trends in both location and scale
parameters, suggesting the advantage of using a more
parsimonious model.

The r-largest method that uses more than one extreme
per (annual) block significantly improves the perfor-
mance of the GEV method. The magnitude of trend is,
however, underestimated when only including a trend
term in the location parameter, and the larger the value
of r is, the bigger the bias is. As always, one should
try to reduce the number of parameters to be estimated
when computing trend with r largest methods. A prac-
tical approach would be to estimate trend in one param-
eter at a time and to use a more complex model that
includes trends in multiple parameters only when sig-
nificant trends have been separately detected in the in-
dividual parameters.

Extreme values are scarce by definition, meaning that
estimates are often required for levels of a process that
are greater than have already been observed. This calls
for a proper analysis of extremes. Our analysis dem-
onstrates very clearly the advantage of using extreme-
value theory in analyzing trends for extremes. There
have been relatively few studies that have used extreme-
value theory to model, detect, or project trends in ex-
tremes of weather and climate. In addition, making ef-
fective use of the available information is important to
trend detection in extremes. Thus, the use of an r-largest
method is encouraged. It should be cautioned, however,
that a large value of r will amplify errors in the GEV
approximation of the behavior of extremes from finite
samples. These errors will, in turn, lead to bias in the
estimation of trends and return values. Thus, moderation
should be exercized in the choice of r. One must also
make sure that the observed extreme values lie within
the domain of attraction of the GEV distribution by
testing the residual against a GEV distribution.
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A final note is that our simulation experiments did
not directly account for variations in the persistence
(serial correlation) of real-world precipitation. Intro-
ducing serial correlation into the simulations would, in
effect, reduce the size of the sample from which the
annual or seasonal extreme has been drawn. Although
we have focused primarily on extremes taken from an-
nual samples of independent, identically distributed
rainfall amounts, we draw the same conclusions from
the much smaller seasonal samples. Therefore, the guid-
ance that we provide on the relative performance of the
different trend assessment techniques and the choice of
r should also hold for moderately serially correlated
data.
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d’une série aléatoire (Limiting distribution of maximum values
of random series). Ann. Math., 44, 423–453.

Groisman, P. Y., R. W. Knight, and T. R. Karl, 2001: Heavy precip-
itation and high streamflow in the contiguous United States:
Trends in the twentieth century. Bull. Amer. Meteor. Soc., 82,
219–245.

Gumbel, E. J., 1958: Statistics of Extremes. Columbia University
Press, 375 pp.

Iwashima, T., and R. Yamamoto, 1993: A statistical analysis of the
extreme events: Long-term trend of heavy daily precipitation. J.
Meteor. Soc. Japan, 71, 637–640.

Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation
amount, frequency, and intensity in the United States. Bull. Amer.
Meteor. Soc., 79, 231–241.

Katz, R. W., and B. G. Brown, 1992: Extreme events in a changing
climate: Variability is more important than averages. Climatic
Change, 21, 289–302.

——, M. B. Parlange, and P. Naveau, 2002: Statistics of extremes in
hydrology. Adv. Water Resour., 25, 1287–1304.

Keim, B. D., and J. F. Cruise, 1998: A technique to measure trends
in the frequency of discrete random events. J. Climate, 11, 848–
855.

Kendall, M. G., 1955: Rank Correlation Methods. 2d ed. Charles
Griffin and Company, 196 pp.

Kharin, V. V., and F. W. Zwiers, 2000: Changes in the extremes in
an ensemble of transient climate simulations with a coupled
atmosphere–ocean GCM. J. Climate, 13, 3760–3788.

Kunkel, K. E., K. Andsager, and D. R. Easterling, 1999: Long-term
trends in extreme precipitation events over coterminous United
States and Canada. J. Climate, 12, 2515–2527.

Leadbetter, M. R., G. Lindgren, and H. Rootzén, 1983: Extremes and
Related Properties of Random Sequences and Processes. Spring-
er-Verlag, 336 pp.

Lins, H. F., and J. R. Slack, 1999: Streamflow trends in the United
States. Geophys. Res. Lett., 26, 227–230.

Mann, H. B., 1945: Non-parametric tests against trend. Econometrica,
13, 245–259.

Meehl, G. A., F. W. Zwiers, J. Evans, T. Knutson, L. Mearns, and P.
Whetton, 2000: Trends in extreme weather and climate events:
Issues related to modeling extremes in projections of future cli-
mate change. Bull. Amer. Meteor. Soc., 81, 427–436.

Richardson, C. W., 1981: Stochastic simulation of daily precipitation,
temperature, and solar radiation. Water Resour. Res., 17, 182–
190.

Sen, P. K., 1968: Estimates of the regression coefficient based on
Kendall’s tau. J. Amer. Stat. Assoc., 63, 1379–1389.

Smith, R. L., 1989: Extreme value analysis of environmental time
series: An application to trend detection in ground-level ozone
(with discussion). Stat. Sci., 4, 367–393.

Todorovic, P., and E. Zelenhasic, 1970: A stochastic model for flood
analysis. Water Resour. Res., 6, 1641–1648.

von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate
Research. Cambridge University Press, 484 pp.

Yue, S., P. Pilon, and G. Cavadias, 2002: Power of the Mann-Kendall
and Spearman’s rho tests for detecting monotonic trends in hy-
drological series. J. Hydrol., 259, 254–271.

Zhang, X., K. D. Harvey, W. D. Hogg, and T. R. Yuzyk, 2001a:
Trends in Canadian streamflow. Water Resour. Res., 37, 987–
998.

——, W. D. Hogg, and E. Mekis, 2001b: Spatial and temporal char-
acteristics of heavy precipitation events over Canada. J. Climate,
14, 1923–1936.

Zwiers, F. W., and V. V. Kharin, 1998: Changes in the extremes of
climate simulated by CCC GCM2 under CO2 doubling. J. Cli-
mate, 11, 2200–2222.


