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[1] Hydrologic prediction errors arise from uncertainty in
initial moisture states (mainly snowpack and soil moisture), in
boundary forcings (primarily future precipitation and
temperature), and from model structure and parameter
uncertainty. We evaluate the relative importance of initial
condition and boundary forcing uncertainties using a hindcast-
based framework that contrasts Ensemble Streamflow
Prediction (ESP) with an approach that we term ‘‘reverse-
ESP’’. In ESP, a hydrologic model with assumed perfect initial
conditions (ICs) is forced by a forecast ensemble resampled
from observed meteorological sequences; whereas reverse-
ESP combines an ensemble of resampled ICs with a perfect
meteorological forecast. The framework shows that in northern
California, US, ICs yield streamflow prediction skill for up to 5
months during the transition between the wet and dry seasons,
whereas during the reverse transition, climate forecast
information is critical. In southern Colorado, IC knowledge
outweighs climate prediction skill for shorter periods due to a
more uniform precipitation regime. Citation: Wood, A. W., and

D. P. Lettenmaier (2008), An ensemble approach for attribution of

hydrologic prediction uncertainty, Geophys. Res. Lett., 35, L14401,

doi:10.1029/2008GL034648.

1. Introduction

[2] In regions such as the western US where winter
snowpack accumulation and melt dominates the surface
hydrologic cycle, seasonal streamflow volumes can be
forecasted with useful accuracy at lead times of up to six
months. Such accuracy is due primarily to the systematic
(physically-constrained) evolution of initial land surface
moisture states from snow that accumulates in the winter
wet season and melts in spring and summer. This phenom-
enon has been exploited for well over 50 years in stream-
flow forecast schemes that use regression or other methods
to relate spring snowpack to the subsequent spring and
summer runoff [Pagano et al., 2004]. In contrast, land
surface initial conditions (ICs) for forecasts made following
the relatively dry summer period do not include a snowpack
that influences future hydrologic fluxes. As a result, fore-
casts depend to a greater extent on soil moisture conditions
and predictability in future meteorological inputs to the
hydrologic system [Maurer and Lettenmaier, 2003].
[3] Understanding sources of forecast skill has long been a

topic of interest in the study of geophysical systems, and
examples of relevant theory and research are prevalent, for

instance, in the atmospheric sciences [e.g., Gustaffson et al.,
1998]. Lorenz [1975] terms the two major sources of predict-
ability in such systems as the ‘‘first’’ (related to ICs) and
‘‘second’’ (related to future boundary forcings) kinds. Collins
and Allen [2002] present a framework for comparing the
magnitudes of each type of predictability and conversely
the potential for errors in each source to diminish forecast skill.
The framework contrasts the forecast variance arising from a
forecast ensemble based on small perturbations to the initial
atmospheric states, and the forecast variance arising from an
ensemble of boundary forcings, to the internal, climatological
variance of the atmospheric system. The same perturbation
concept can provide insights into the sources of predictability
for hydrologic systems. Indeed, a major goal for hydrologic
science identified by National Research Council [1999] is to
improve our understanding of uncertainty in hydrologic sys-
tems, including as a technique the use of hydrologic perturba-
tion experiments.
[4] The response of the atmosphere to perturbations

differs from that of the land surface. Perturbations in
atmospheric states often grow chaotically toward divergent
outcomes [e.g., Shuka, 1981], whereas on the land surface,
negative feedbacks often outweigh positive, reinforcing feed-
backs, and consequently tend to dampen anomalies. For
example, soil drying by evapotranspiration and percolation
decreases the rate of further drying by thesemechanisms due to
reduced moisture availability. Wet soil moisture has an oppo-
site effect: it increases the rate of drainage from the soil,
decreases the proportion of precipitation that infiltrates into the
soil column, and can increase evaporation in non-energy
limited situations, all of which accelerate the restoration of
soil moisture to normal levels. Positive feedbacks on surface
moisture also exist. Land-atmosphere coupling [e.g., Koster
and Suarez, 2004], for example, can involve the augmentation
of boundary layer moisture by evaporation, leading to in-
creased precipitation and further increases to soil moisture and
evaporation. These feedbacks are likely to be secondary in
magnitude to the negative internal feedbacks of the land
surface system, but the comparison has not been quantified.
The balance of these land surface feedbacks toward the
negative implies that absent a strongly anomalous meteoro-
logical forecast, current drought and flood conditions will
evolve toward climatological averages.
[5] The importance of land surface moisture to hydro-

logic prediction is well established [Day, 1985; Maurer and
Lettenmaier, 2003; Berg and Mulroy, 2006; Mahanama et
al., 2008]. Advances in seasonal climate prediction over the
last two decades have motivated interest in improving
hydrologic forecasts via the incorporation of climate pre-
dictions into operational hydrologic prediction approaches.
The seasonally and geographically varying influence of land
surface initial conditions relative to climate forcings on
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hydrologic predictability dictate limits, however, to the
potential value of improvements in climate forecast skill.
We demonstrate an ensemble-based approach for exploring
these limits and characterizing the relative importance of the
two sources of predictability in hydrologic systems. We
examine two hydroclimatic settings, one that has strongly
seasonal precipitation typical of much of the western U.S.,
and one that has a more uniform seasonal precipitation
regime.

2. ESP and ‘‘Reverse-ESP’’

[6] To evaluate the relative importance of hydrologic
initial conditions and climate forecast error as sources of
seasonal runoff forecast uncertainty, we use a framework
that contrasts Ensemble Streamflow Prediction (ESP) [Day,
1985] as developed at the U.S. National Weather Service
(NWS) with an approach that we term ‘‘reverse-ESP’’
(revESP). Traditional ESP uses a hydrologic model driven
by observed meteorological forcings up to the time of
forecast to estimate what are (unrealistically) considered
error-free land surface initial moisture conditions, and then
produces ensemble forecasts by running the model into the
future using model forcings (primarily precipitation and
temperature) resampled from historical meteorology. Thus
ESP represents forecast uncertainty due to boundary forcing
uncertainties only, a shortcoming addressed by Wood and
Schaake [2008] among others. Boundary forcing uncertainty
also may be underestimated if a short historical record is
used to supply future forcings. ESP is applied operationally
by the NWS River Forecast Centers and other water
management-focused groups in both the public and private
sectors. Climate predictions can be readily incorporated into
seasonal-lead ESP by adjusting historical forcings to reflect
an alternative climate forecast [e.g., Perica et al., 2000]. In
practice, uncertainties in simulated ICs for ESP are reduced
by adjusting model spin-up forcings or state variables to
bring model outputs into closer agreement with observa-
tions [Seo et al., 2003].
[7] The revESP approach reverses the ESP construct by

driving the model with resampled meteorological ensembles
during the spinup period (up to the date of forecast) to create
an ensemble of ICs that are each paired with observed
(assumed perfect) meteorology in the future period. Where-
as ESP derives its skill from ICs and the ensemble spread
comes from boundary forcing uncertainty, revESP skill
comes from boundary forcings and the ensemble spread from
IC uncertainty. Just as ESP’s future forcings reflect climato-
logical variations, climatological variations are represented
in revESP’s IC ensemble, which consists of hydrologic states
for the same day of the year from a historical period. These
two constructs are illustrated in Figure 1, along with a
depiction of climatology to generate both the ICs and future
conditions as a ‘‘forecast’’. Climatology lacks knowledge of
either ICs or future forcings, and serves as a reference
forecast for assessment of predictability ESP and revESP.
[8] The revESP is patently artificial: in a real-time forecast

setting, the future forcing is not known, and the climatolog-
ical range of ICs almost certainly overestimates uncertainty
about the true moisture states. ESP and revESP are here
intended to provide the endpoints in a hindcast diagnosis
framework. If the hindcast-based ensembles are compared

with observations (e.g., of streamflow), the resulting error for
both revESP and ESP includes model error. The ESP and
revESP hindcasts can also be evaluated against retrospective
model simulations of hydrology driven by observations, in
which case the forecast errors are related solely to future
climate uncertainty and the predictability is solely related to
knowledge of initial moisture state. We take the latter route,
and use retrospective model simulations for comparison.

3. Case Study Evaluation

[9] We illustrate the ESP/revESP uncertainty attribution
framework at two locations in the western U.S. shown in

Figure 1. Schematic illustrating hydrologic state evolution
during spinup and forecast using (a) ESP approach, (b) reverse
ESP approach, and (c) climatology.
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Figure S1: the upper Sacramento River drainage to Shasta
Reservoir in northern California, and the Rio Grande River
drainage upstream of Lobatos, Colorado (basin average
elevations of 1,475 and 2,870 meters, and drainage areas
of 16,430 and 11,930 km2, respectively).1 The Variable
Infiltration Capacity hydrologic model [Liang et al., 1994]
was implemented at a daily time step as described by Wood
et al. [2005], to which the reader is referred for details of
model calibration, data sources and the generation of the
retrospective forecast dataset that is used in the analysis
presented here. In brief, the hindcast data set provides four
ESP and revESP forecast ensembles per year, for the period
1979–1999, with initialization dates on the 25th day of
January, April, July and October, each of lead approximate-
ly 6 months. Each forecast ensemble contained 21 members
drawn from the period 1979–1999.
[10] The observed precipitation and simulated monthly

hydrologic water balances of the two study basins are
shown in Figure 2. The Shasta Reservoir drainage receives
precipitation predominantly in the winter months, most of
which is stored in the soil column and as snow water
equivalent (SWE), and is depleted as runoff and evaporation
during the spring and summer. The lowest runoff occurs in the
late summer and early fall (note, runoff is approximately
equivalent to streamflow because channel routing lags are
minimal at a monthly time step for small basins). The Rio

Grande River drainage exhibits a similar snow accumulation
andmelt cycle driven bywinter precipitation, but also receives
summer precipitation that produces a minor runoff response
before the low streamflow period in the winter. The four
initialization dates for the forecasts capture markedly different
hydrologic conditions and future climate expectations.
[11] To quantify predictability for the forecasts, we use a

ratio of variances framework [Collins and Allen, 2002] that
compares the mean squared error (MSE) from each of the
two ensemble forecast approaches with the MSE resulting
when climatology is used as an ensemble prediction, which
is equivalent to the climatological variance. To specify the
error and predictability metrics, let hsm(t) be the hydrologic
forecast value (e.g., streamflow, soil moisture) at lead time t
from initial hydrologic state s and boundary meteorological
forcing m. ICs are the hydrologic states for the same day of
year from a period of S years. Meteorological forcings are in
this case the daily temperature and precipitation model input
sequences from a period of M historical years, where the
start of each sequence begins on the day of year of the ICs.
[12] Omitting the functional dependence on time (both

lead time and initialization day of the year) from subsequent
formulations, the mean squared error of ESP, the future
meteorological condition ensemble forecast, is

E ESP½ � ¼ 1

S

XS
s¼1

1

M

XM
m¼1

hsm � hssð Þ2
" #

; ð1Þ

Figure 2. Mean observed precipitation (P) and simulated water balance variables – soil moisture (SM), snow water
equivalent (SWE), runoff (RO) and evaporation (E)—for the two study basins. Model SM is reduced by the lowest mean
monthly value so that the plotted values shown only the active range.

1Auxiliary materials are available in the HTML. doi:10.1029/
2008GL034648.
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the forecast error of revESP, the initial condition ensemble
forecast is

E revESP½ � ¼ 1

M

XM
m¼1

1

S

XS
s¼1

hsm � hmmð Þ2
" #

; ð2Þ

and the error of the naı̈ve climatology (Clim) forecast is

E C lim½ � ¼ 1

S

XS
s¼1

1

S

XS
t¼1

htt � hssð Þ2
" #

: ð3Þ

[13] When the ratio of the MSE of either forecast ensem-
ble to the MSE of the climatology is less [greater] than 1,
the forecast is more [less] skillful than a climatological
forecast. Ratios greater than 1 arise from combinations of
the ICs with forcing ensembles that produce a wider range of
hydrologic responses than are present in the simulated
climatology. The ratio approaches zero for a perfect forecast.

4. Results

[14] The ratios of MSE for ESP/Clim and revESP/Clim
for streamflow forecasts from the four initiation dates and
for all monthly forecast lead times are plotted for both
locations in Figure 3. For the late October ESP forecast at
the Shasta Reservoir location, the MSE at all lead times is
close to the climatology ensemble MSE, whereas the
revESP forecast (known future meteorology with climato-
logical IC spread) leads to a nearly perfect hydrologic
forecast. This result is consistent with the depleted moisture
states (see SWE and soil moisture in Figure 2) at this time of

year, and implies that any hydrologic forecast skill must
come from knowledge of future climate.
[15] In contrast, for the Rio Grande River, and the same

(late October) forecast date, knowledge of ICs (ESP) greatly
reduces the forecast variance for up to four months, whereas
knowledge of future forcings (revESP) has a much smaller
contribution to forecast skill for equivalent leads; and the
signals swap relative importance for leads 5 and 6 months.
This result seems counter-intuitive, given that SWE and soil
moisture are also relatively depleted in the basin at the
forecast initialization time (Figure 2). A number of points
are relevant. The late summer precipitation regime (not
present in the Shasta drainage) results in substantial varia-
tions in soil moisture, which then influence late fall and
winter runoff. Also, the snow accumulation season begins
earlier than in the Shasta Reservoir drainage, with the result
that flows during the forecast period are mostly influenced
by soil moisture rather than by late fall and winter precip-
itation. Although late fall and winter runoff is a small
fraction of spring snowmelt runoff, hence of lesser impor-
tance to water resources, significant forecast skill may be
attainable from knowing ICs (e.g., ESP) for flows in the Rio
Grande drainage for this period.
[16] The subsequent three forecasts in the Shasta Reser-

voir drainage show the increasing importance of knowing
ICs and decreasing importance of future climate prediction
to hydrologic prediction skill, which is a result of the
progressive accumulation of moisture in the soil and snow-
pack and (for the late May and August forecasts) the onset
of the dry summer period. By October, for both late May
and August forecasts, the contribution of ICs is gone, and
the effect of fall precipitation variability in determining

Figure 3. The ratios of mean squared error (MSE) of the ESP and revESP 6-month lead forecast ensembles to MSE from
using a climatological sample as a forecast, for two basins and for four starting dates.
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hydrologic response becomes pronounced, leading to nearly
zero forecast variance given known future forcings
(revESP). The January, April and August forecasts in the
Rio Grande River, in contrast, show an alternating influence
of ICs versus climate forcings. Knowledge of late January
ICs (ESP) becomes less important than knowledge of
climate during the transitional months from a baseflow
regime to a snowmelt regime (February to April), when
climate variation determines the timing of melt. For the late
April forecast start date, knowledge of ICs is again very
important, as the strong melt-based generation of stream-
flow is underway. Toward the end of the summer, as
snowmelt effects wane, precipitation regains control over
the hydrologic response, and consequently the revESP
forecast again provides the greater reduction in forecast
error.

5. Discussion and Conclusions

[17] The contrasting results of ESP and revESP across
different seasons and locations indicate the large variation in
the influence of errors in initial conditions and the influence
of climate forecast skill on hydrologic prediction. In the
Shasta Reservoir drainage, knowledge of ICs provides
streamflow prediction skill for up to 5 months during the
transition from the wet to the dry season, whereas during the
reverse transition, climate forecast information is critical. In
the Rio Grande River drainage, two regimes control hydro-
logic persistence. The first is a baseflow regime in winter,
and the second is a melt regime in spring. During the winter/
spring transition, IC knowledge is more important than
climate information, as in the Shasta Reservoir inflow case.
The periods during which IC predictability dominates are
shorter than in California, however, because they are
followed by greater temporal variability in the climate-
runoff relationship caused in part the late summer precipi-
tation. The ratios of errors for each ensemble are indicative
of the fractional contribution of the unknown feature of that
ensemble to forecast errors. For example, the ratio of nearly
1 for the October ESPs show that future climate uncertainty
almost completely controls future flow forecast uncertainty.
[18] While these results will come as no surprise to those

engaged in the practice of hydrologic prediction, they have
important implications for hydrologic predictability that
have not generally been recognized. Common practices
such as aggregating climate forecast assessments across
space and/or up to a season in the assessment of forecast
skill, for instance, may obscure the forecasts’ performance
at the scales of spatial and temporal variability that matter
for hydrologic or other end uses. The ESP/revESP construct
helps determine the tradeoff between improved ICs (e.g.,
via land data assimilation) versus improved climate forecast
accuracy.
[19] Our results suggest that the emphasis placed by

hydrologic forecasters on obtaining better information about
future climate versus initial conditions should vary during
the year and by forecast lead time, yet commonly used ESP-
type frameworks lack a mechanism for representing IC
errors. Fortunately, initiatives such as the Hydrologic En-

semble Prediction Experiment (HEPEX) [Schaake et al.,
2007] are re-evaluating ensemble hydrologic prediction
approaches to address IC and climate forecast related
uncertainties. A central tenet of HEPEX is the requirement
that real-time forecasts be accompanied by hindcasts pro-
duced via consistent methods. This article underscores the
importance of such hindcasts to quantification and attribu-
tion of hydrologic prediction skill.
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