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What i1s Seasonal Prediction?

Seasonal mean states can be characterized by the
probability density function (PDF). This PDF depends

on

— Season
— Variable

— Location
Seasonal prediction depends our ability to
differentiate climatological PDF from the PDF for a

particular season (for which prediction is to be made)
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What i1s Seasonal Prediction?
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What Lends Predictability in Long-
Range Predictions

* Influence of boundary conditions

— Anomalous SSTs -2 Influence on atmospheric variability

— Tier-2 predictions

* Initial conditions
L
— Weather prediction o >N H
r e
— ENSO prediction | \_/’_‘
— Tier -1 predictions F=—""g10m Track Changes
H
DIVERGEHCE Equator
H

ICTP Summer School on Attribution and Prediction of Extreme Events



What Lends Predictability in Long-
Range Predictions?

— Climatological e |_ong Lead Forecast == == = Medium Lead Forecast = Short Lead Faorecas! t

» The spread with lead
time increases

= PDF shifts towards the
climatological PDF
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Why there is Spread (Uncertainty) in
Forecasts?

 Non-linear dynamical systems sensitivity to
specification of initial conditions

 Deterministic chaos

 Uncertainty could be better quantified, but can

never be removed
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Examples of Spread: ENSO Prediction
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What Provides Skill in Seasonal
Predictions

e It is our ability to distinguish PDF of outcomes for

the event to be predicted from the corresponding

climatological PDF

 Differences in the PDF can come from differences

INn various moments of the PDF
— Mean
— Spread

— Skewness
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Examples of High/Low Prediction SKkill

—lmaiologica POF  es==Predicted POF
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Seasonal Prediction Methods

 Empirical prediction tools

— Advantages
 Trained based on historical observations
 Unbiased

 Simple and computationally efficient

— Disadvantages
 Limited by observational data
 Mostly depend on linear relationships
 Non-stationarity in climate is hard to include

« Cannot handle unprecedented situations
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Seasonal Prediction Methods

 Dynamical Prediction Tools

— Advantages
* Linearity and non-stationarity is not an issue
» Easier to construct PDF of seasonal mean state
» Easier to handle unprecedented situations

— Disadvantages
 Computationally expensive and require a large infrastructure
» Forecast systems have biases that requires special attention

 Properties of empirical and dynamical prediction tools are
complementary in nature, and in general, and generally

both are used in the development of final forecast
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Components of a Seasonal Forecast
System

e Forecast system components
— Initialization
— Hindcasts
— Real-time forecasts
— Skill assessment
— Bias correction and calibration

— Forecast dissemination
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Initialization

e Various components of the forecast system need to be

initialized with their observed state

— Atmosphere (temperature; humidity; winds)
— Ocean (temperature; salinity; ocean currents)
— Land (soil moisture; snow)

— Sea ice (extent; thickness)

* Initialization is done from the Climate Forecast System
Reanalysis (CFSR) that provides a consistent 3-dimensional
analysis of various components of the Earth System

« After initialization, forecast system is run to nine months
into the future
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Hindcasts

« What is the purpose of hindcasts?
— Provides an assessment of the skill of the seasonal
forecast system

— Because of model biases
» Real-time forecasts have to be bias corrected
 Hindcasts provide the data set for bias correction
 Hindcasts are used to develop initial month, and lead-time

dependent model climatology

— Calibration of real-time forecasts
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Hindcasts

 Run the forecast system over last thirty years
(1981-2010)

 Four nine months forecast every 5% day of the
calendar

« 72 forecasts every year
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Real-time Forecasts: CFSv2

 Four nine month forecasts every day

« 120 seasonal forecasts in a month

 Real-time forecasts are constructed based on
forecasts from latest 10 days of initial conditions,
l.e., an ensemble of 40 forecasts is used for
developing real-time seasonal predictions

 Lagged ensemble provides an estimate of PDF of

seasonal mean states
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Real-time Forecasts

e Configuration of real-time forecasts generally

differs from their hindcast counterpart
— More frequent

— Larger ensembles
 Consistency in the analysis of initial conditions,
particularly for slowly varying components of the

Earth System (SST, soil moisture) is crucial!
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Skill Assessments

« Based on 30-year hindcast, skill of the CFSv2 can

be assessed for

— Predicting sea surface temperature anomalies

— Predicting various SST indices that are important for
seasonal predictions, e.g., Nino 3.4 SST index

— Surface quantities over land, e.g., precipitation and
surface temperatures

— Other variables
e Soil moisture

e Seaice
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Skill Assessment:; SST

Anomaly Correlation

Seasonal correlation: SST Initial month: May 1981-2008
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Skill Assessment: Surface Temperature

Anomaly Correlation

CFSv2 Correlation T2m
Initial month: Jan 1982-2009
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Anomaly Correlation

Skill Assessment: Surface Temperature

CFSvZ2 Correlation T2Zm

Initial month: Jan 1982—-2009
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Skill Assessment: Precipitation

Anomaly Correlation

CFSv2 Correlation Precipitation

Initial month: Jan 1982—-2009

FMA Lead: 0 month JJA Lead: 4 month
80N 80N
T0OM 4 FOM 4
6aN 1 GON 1"
50N 1 50N
40N 4 40M 4
30N 4 30N 4
20M : : — i 2 : : — e

160W 140w 120w 100w BOW  BOW 160W 140W 120w 100w  BOW  BOW

MAM Lead: 1 month JAS Lead: 5 month
80N 80N
TON 1 . FON .

2 . - o
60N 1 g}- GON 1"
soN{ 7 soN{ T
40N 1 40N
JON A 30N 1
20N = . — i oo = . — L

TEOW 1400 1200 100w BOW BOW TEOW 1400 1200 100w BOW BOW
—===20l| | | [T [ =

0.3 n.3 0.4 n= 0.8 n.7 [0 31 N4

ICTP Summer School on Attribution and Prediction of Extreme Events



Bias Correction and Calibration

* Bias correction
— Correct for differences in observed and predicted mean

state
— Adjust if variability between observations and predictions

differs
o Calibration
— Adjust predicted anomaly based on assessment of past sKkill

(e.g., from hindcast data set)
— If past skill is close to zero, make the forecast PDF same as

the climatological PDF
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Differences in Mean State

CFSv2 Bias(Fcst—Ghen) T2m (K)
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Differences in Variability

Standard Deviation Nino34 SST(K)

1.6 1 1.6 - \
1.4 1 1.4 1
ey W
0.6 0.5 4
0.4 1 0.4
0.2 4 0.2 4

|:| ¥ ¥ ¥ T T |:| ¥ ¥ ¥ T ¥

0 1 P 3 o 5 6 0 1 Z 3 4 5 6
JAS  AS0 SON OND NDJ DJF o JFBRA JFWM FMA MAM AMJ MJJ JJA JAS

- /

ICTP Summer School on Attribution and Prediction of Extreme Events 28/35



Forecast Dissemination

 Graphical products
— Bias corrected seasonal mean anomalies

— Normalized anomalies

— Bias corrected anomalies with skill mask

 Forecast and hindcast gridded data
— Real-time forecasts
— Hindcast data available via several channels
— Procedures could be developed for statistical

downscaling
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Graphical Products: SST Anomaly
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Graphical Products: Standardized SST
Anomalies
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Graphical Products: SST Anomalies
with Skill Mask
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Current Status of Seasonal Prediction
Systems

« WMO (World Meteorological Organization) Global

Producing Centers (GPCs) for seasonal Predictions

— 12 in all

— To be designhated as a GPC, a seasonal prediction
center has to conform with some designation
criterion

— All GPCs generate seasonal predictions on a
monthly basis

— https://www.wmolc.org/
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Summary

e Seasonal prediction system are fairly mature
 Hindcast and real-time forecast data is a huge
data base that can be used for various research

and analyses purposes
— Analysis and predictability of extremes
— Influence of various climatic factors on extremes

(attribution and prediction)
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