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Observed Climate Change 
“Warming of the climate system is unequivocal, and since 
the 1950s, many of the observed changes are 
unprecedented over decades to millennia. The atmosphere 
and ocean have warmed, the amounts of snow and ice 
have diminished, sea level has risen, and the 
concentrations of greenhouse gases have increased.” 

IPCC-WG1-AR5 SPM 
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Figure SPM.1 |  (a) Observed global mean combined land and ocean surface temperature anomalies, from 1850 to 2012 from three data sets. Top panel: 
annual mean values. Bottom panel: decadal mean values including the estimate of uncertainty for one dataset (black). Anomalies are relative to the mean 
of 1961−1990. (b) Map of the observed surface temperature change from 1901 to 2012 derived from temperature trends determined by linear regression 
from one dataset (orange line in panel a). Trends have been calculated where data availability permits a robust estimate (i.e., only for grid boxes with 
greater than 70% complete records and more than 20% data availability in the first and last 10% of the time period). Other areas are white. Grid boxes 
where the trend is significant at the 10% level are indicated by a + sign. For a listing of the datasets and further technical details see the Technical Summary 
Supplementary Material. {Figures 2.19–2.21; Figure TS.2}
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Figure SPM.1 |  (a) Observed global mean combined land and ocean surface temperature anomalies, from 1850 to 2012 from three data sets. Top panel: 
annual mean values. Bottom panel: decadal mean values including the estimate of uncertainty for one dataset (black). Anomalies are relative to the mean 
of 1961−1990. (b) Map of the observed surface temperature change from 1901 to 2012 derived from temperature trends determined by linear regression 
from one dataset (orange line in panel a). Trends have been calculated where data availability permits a robust estimate (i.e., only for grid boxes with 
greater than 70% complete records and more than 20% data availability in the first and last 10% of the time period). Other areas are white. Grid boxes 
where the trend is significant at the 10% level are indicated by a + sign. For a listing of the datasets and further technical details see the Technical Summary 
Supplementary Material. {Figures 2.19–2.21; Figure TS.2}
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“Total radiative forcing is positive, and has led to an uptake of 
energy by the climate system.”                  IPCC WG1 AR5 SPM 

Summary for Policymakers

10

• Annual CO2 emissions from fossil fuel combustion and cement  production were 8.3 [7.6 to 9.0] GtC12 yr–1 averaged over 
2002–2011 (high confidence) and were 9.5 [8.7 to 10.3] GtC yr–1 in 2011, 54% above the 1990 level. Annual net CO2 
emissions from  anthropogenic land use change were 0.9 [0.1 to 1.7] GtC yr–1 on average during 2002 to 2011 (medium 
confidence). {6.3}

• From 1750 to 2011, CO2 emissions from fossil fuel combustion and cement production have released 375 [345 to 405] 
GtC to the atmosphere, while deforestation and other land use change are estimated to have released 180 [100 to 260] 
GtC. This results in cumulative anthropogenic emissions of 555 [470 to 640] GtC. {6.3}

• Of these cumulative anthropogenic CO2 emissions, 240 [230 to 250] GtC have accumulated in the atmosphere, 155 [125 
to 185] GtC have been taken up by the ocean and 160 [70 to 250] GtC have accumulated in natural terrestrial ecosystems 
(i.e., the cumulative residual land sink). {Figure TS.4, 3.8, 6.3}

• Ocean acidification is quantified by decreases in pH13. The pH of ocean surface water has decreased by 0.1 since the 
beginning of the industrial era (high confidence), corresponding to a 26% increase in hydrogen ion concentration (see 
Figure SPM.4). {3.8, Box 3.2}

Figure SPM.4 |  Multiple observed indicators of a changing global carbon cycle: (a) atmospheric concentrations of carbon dioxide (CO2) from Mauna Loa 
(19°32’N, 155°34’W – red) and South Pole (89°59’S, 24°48’W – black) since 1958; (b) partial pressure of dissolved CO2 at the ocean surface (blue curves) 
and in situ pH (green curves), a measure of the acidity of ocean water. Measurements are from three stations from the Atlantic (29°10’N, 15°30’W – dark 
blue/dark green; 31°40’N, 64°10’W – blue/green) and the Pacific Oceans (22°45’N, 158°00’W − light blue/light green). Full details of the datasets shown 
here are provided in the underlying report and the Technical Summary Supplementary Material. {Figures 2.1 and 3.18; Figure TS.5}
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12 1 Gigatonne of carbon = 1 GtC = 1015 grams of carbon. This corresponds to 3.667 GtCO2.
13 pH is a measure of acidity using a logarithmic scale: a pH decrease of 1 unit corresponds to a 10-fold increase in hydrogen ion concentration, or acidity. 

SPM “The atmospheric concentrations of carbon dioxide, 
methane, and nitrous oxide have increased to levels 
unprecedented in at least the last 800,000 years.  

Carbon dioxide concentrations have increased by 40% 
since pre-industrial times … ”     IPCC WG1 AR5 SPM 

IPCC WG1 AR5 Fig SPM-4 
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from black carbon absorption of solar radiation. There is high confidence that  aerosols and their interactions with clouds 
have offset a substantial portion of global mean forcing from well-mixed greenhouse gases. They continue to contribute 
the largest uncertainty to the total RF estimate. {7.5, 8.3, 8.5}

• The forcing from stratospheric volcanic aerosols can have a large impact on the climate for some years after volcanic 
eruptions. Several small eruptions have caused an RF of –0.11 [–0.15 to –0.08] W m–2 for the years 2008 to 2011, which 
is approximately twice as strong as during the years 1999 to 2002. {8.4}

• The RF due to changes in solar irradiance is estimated as 0.05 [0.00 to 0.10] W m−2 (see Figure SPM.5). Satellite obser-
vations of total solar irradiance changes from 1978 to 2011 indicate that the last solar minimum was lower than the 
previous two. This results in an RF of –0.04 [–0.08 to 0.00] W m–2 between the most recent minimum in 2008 and the 
1986 minimum. {8.4}

• The total natural RF from solar irradiance changes and stratospheric volcanic aerosols made only a small contribution to 
the net radiative forcing throughout the last century, except for brief periods after large volcanic eruptions. {8.5}

Figure SPM.5 |  Radiative forcing estimates in 2011 relative to 1750 and aggregated uncertainties for the main drivers of climate change. Values are 
global average radiative forcing (RF14), partitioned according to the emitted compounds or processes that result in a combination of drivers. The best esti-
mates of the net radiative forcing are shown as black diamonds with corresponding uncertainty intervals; the numerical values are provided on the right 
of the figure, together with the confidence level in the net forcing (VH – very high, H – high, M – medium, L – low, VL – very low). Albedo forcing due to 
black carbon on snow and ice is included in the black carbon aerosol bar. Small forcings due to contrails (0.05 W m–2, including contrail induced cirrus), 
and HFCs, PFCs and SF6 (total 0.03 W m–2) are not shown. Concentration-based RFs for gases can be obtained by summing the like-coloured bars. Volcanic 
forcing is not included as its episodic nature makes is difficult to compare to other forcing mechanisms. Total anthropogenic radiative forcing is provided 
for three different years relative to 1750. For further technical details, including uncertainty ranges associated with individual components and processes, 
see the Technical Summary Supplementary Material. {8.5; Figures 8.14–8.18; Figures TS.6 and TS.7}
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But knowing that the forcing is 
positive does not mean you have 
detected the cause of the observed 
warming ... 



Attribution 

•  are observed 
changes 
consistent with  

 expected 
responses to 
forcings  

 inconsistent 
with alternative 
explanations 

Solar + 
volcanic 

All 
forcing 

Final Draft (7 June 2013) Technical Summary IPCC WGI Fifth Assessment Report 
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Figure TS.9: Three observational estimates of global mean surface temperature (black lines) from HadCRUT4, 
GISTEMP, and MLOST, compared to model simulations (CMIP3 models – thin blue lines and CMIP5 models – thin 
yellow lines) with anthropogenic and natural forcings (a), natural forcings only (b) and greenhouse gas forcing only (c). 
Thick red and blue lines are averages across all available CMIP5 and CMIP3 simulations respectively. All simulated 
and observed data were masked using the HadCRUT4 coverage (since this dataset has the most restricted spatial 
coverage), and global average anomalies are shown with respect to 1880–1919, where all data are first calculated as 
anomalies relative to 1961–1990 in each grid box. Inset to (b) shows the three observational datasets distinguished by 
different colours. {Figure 10.1} 
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Attribution results 
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Figure 10.21: Detection and attribution signals in some elements of the climate system, at regional scales (top panels) 
and global scales (bottom 4 panels). Brown panels are land surface temperature time series, green panels are 
precipitation time series, blue panels are ocean heat content time series, and white panels are sea-ice time series. 
Observations are shown on each panel in black or black and shades of grey. Blue shading is the model time series for 
natural forcing simulations and pink shading is the combined natural and anthropogenic forcings. The dark blue and 
dark red lines are the ensemble means from the model simulations. All panels show the 5–95% intervals of the natural 
forcing simulations, and the natural and anthropogenic forcing simulations. For surface temperature the results are from 
Jones et al. (2013 ) (and Figure 10.1). The observed surface temperature is from HadCRUT4. Observed precipitation is 
from Zhang et al. (2007) (black line) and CRU TS 3.0 updated (grey line). Three observed records of ocean heat content 
(OHC) are shown. Sea-ice anomalies (rather than absolute values) are plotted and based on models in Figure 10.16. The 
green horizontal lines indicate quality of the observations and estimates. For land and ocean surface temperatures panels 
and precipitation panels, solid green lines at bottom of panels indicate where data spatial coverage being examined is 
above 50% coverage and dashed green lines where coverage is below 50%. For example, data coverage of Antarctica 
never goes above 50% of the land area of the continent. For ocean heat content and sea-ice panels the solid green line is 
where the coverage of data is good and higher in quality, and the dashed green line is where the data coverage is only 
adequate. More details of the sources of model simulations and observations are given in the Supplementary Material 
(10.SM.1). 
 

IPCC WG1 AR5 Fig 10.21 

Changes in 
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and upper 
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content 
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Attribution Summary (cont’d) 

IPCC WG1 AR5 Chapter10 



  Overview of the methodology 



Definition of D & A 
•  Detection of change is defined as the process of 

demonstrating that climate or a system affected by 
climate has changed in some defined statistical sense 
without providing a reason for that change.  

•  Attribution is defined as the process of evaluating the 
relative contributions of multiple causal factors to a 
change or event with an assignment of  statistical 
confidence. 

•  In WG1, casual factors usually refer to external 
influences, which may be anthropogenic (GHGs, 
aerosols, ozone precursors, land use) and/or natural 
(volcanic eruptions, solar cycle modulations). 

IPCC Good Practice Guidance Paper on Detection and Attribution, 2010 



Four core elements 
1.  Observations of climate indicators 

2.  An estimate of external forcing 
– how external drivers of climate change have evolved 

before and during the period under investigation 
– e.g., GHG and solar radiation 

3.  A quantitative physically-based understanding of how 
external forcing might affect these climate indicators. 
– normally encapsulated in a physically-based model 

4.  An estimate of climate internal variability 
– often, but not always, derived from a physically-based 

model 

IPCC WG1 AR5 Chapter 10 



General assumptions 

•  Key forcings have been identified 
•  Signals are additive 
•  Noise is additive 
•  The large-scale patterns of response are 

correctly simulated by climate models 



Methodology 

•  Methods are determined by 
– Assumptions about sources of uncertainty 
– Whether signals are “optimized” 

•  Invariably D&A relies heavily on climate 
models 
– D&A is a “small sample” statistical problem 

•  The objective is always to assess the 
evidence contained in the observations. 

•  Methods are simple, yet complex. 



  Non-optimal D&A approaches 



Qualitatively, we could 
evaluate the consistency 
of observed changes with 
modelled changes 

Non-optimal approach Final Draft (7 June 2013) Chapter 10 IPCC WGI Fifth Assessment Report 

Do Not Cite, Quote or Distribute 10-115 Total pages: 132 

 

 
 
Figure 10.7: Global, land, ocean and continental annual mean temperatures for CMIP3 and CMIP5 historical (red) and 
historicalNat (blue) simulations (multi-model means shown as thick lines, and 5–95% ranges shown as thin light lines) 
and for HadCRUT4 (black). Mean temperatures are shown for Antarctica and six continental regions formed by 
combining the sub-continental scale regions defined by Seneviratne et al. (2012). Temperatures are shown with respect 
to 1880–1919 for all regions apart from Antarctica where temperatures are shown with respect to 1950–2010. Adapted 
from Jones et al. (2013 ). 
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1.  Use climate models to estimate “form” of signal 
–  Usually the mean F of an ensemble of forced runs 

2.  Estimate amplitude of signal in the observations 
–  A scaled inner-product between a normalized signal 

and observations 

–  Signal could be a pattern of change in space, or in 
space and time, or across multiple variables  

Non-optimal approach 

signal observations 



Non-optimal approach 
3.  Compare S with amplitude of signal in differently forced 

model runs 
4.  Compare S with natural variability of signal amplitude in 

control simulations 
–  Calculate amplitude in similar length control run segments 
–  Basis for a test of the strength of the signal in the observations 

•  Note that model output is processed to match 
observations  

–  it is masked to be “missing” where/when observations are 
missing, etc.  

–  the fact that data are missing may have some impact … we want 
to be sure we are not detecting an “aliased” signal 

5.  Demonstrate that alternative signals are unlikely to be 
able to explain observed change 



Non-optimal approach 
•  Some recent studies taking this approach 

include 
– Barnett et al, 2005; Pierce et al., 2006  

•  anthropogenic influence on ocean temperature 
structure 

– Santer et al, 2007 
•  SSTs in tropical cyclone formation regions 

– Barnett et al, 2008  
•  western United States surface hydrology 
•  temperature, snow pack and stream flow combined 

– Marvel and Bonfils, 2013 
•  zonal distribution of global precipitation 



Observed and simulated variability 

Basin averaged standard-deviation of temperature  
(5-year time scale, masked) 

Pierce et al, 2006, Fig. 3 



Signal 
pattern 

•  Model-simulated 
temperature 
changes (by 
level and ocean 
basin) 

•  PCM and 
HadCM3 
combined 

•  1960s-1990s 
•  By basin 
•  Masked 
•  Scales offset by 

0.1°C 

Pierce et al, 2006, Fig. 10 



Signal Amplitude 

•  Using common model fingerprint 
•  90% confidence bands are shown 

Pierce et al, 2006, Fig. 11 



  Optimal D&A Approaches 



Optimal approach 

• Originally developed in a couple of different ways 
–  Optimal filtering (North and colleagues, early 1980’s) 
–  Optimal fingerprinting (Hasselmann,1979; Hegerl et al, 1996; 1997) 

• Variants of linear regression 
–  Ordinary least squares / Generalized least squares (Allan and Tett, 

1999) 
–  Total least squares (Allan and Stott, 2003, Ribes et al, 2009, 2012a,b) 
–  Errors in variables (Huntingford et al, 2006, Hannart et al, 2014) 



1901-1910 1901-1910 1911-1920 1911-1920 1921-1930 1921-1930 1931-1940 1931-1940 1941-1950 1941-1950 1951-1960 1951-1960 1961-1970 1961-1970 1971-1980 1971-1980 1981-1990 1981-1990 1991-2000 1991-2000 

Observations (HadCRUT4) Multi-model mean (ALL forcings) 

Evaluate 
scaling factors !! Evaluate 

residuals 
!!

! = !"+ !!
Y	

 X	



2001-2010 2001-2010 

11 decades (1901-1911 to 2001-2011) 



Y   Observations 

X   Expected changes – one vector for each “signal” 

β	

 Regression coefficients – aka “scaling factors” 

ε	

 Residuals – internal variability 

! = !!!!
!

!!!
+ ! = !"+ !!

Idea is to interpret the observations with a regression 
model, where physics is used to provide representations 
of expected changes due to external influences, statistics 
is used to demonstrate a good fit, and physics is used to 
interpret the fit and rule out other putative explanations 
Key statistical questions relate to the βi’s and residuals 
ε	





! = !!!!
!

!!!
+ ! = !"+ !!

Key assumptions 

•  Responses to forcings are additive 
•  Expected patterns of response in vectors Xi are correct 
•  Residuals εj, j=1, …, n are zero-mean 
•  … some more, discussed later 

No assumptions about the “covariance structure” 
of the residuals 

This is a “small sample” statistical inference problem 
(even if vector Y is big, covering essentially the globe 
and the entire instrumental period) 



To fit, chose β to minimize 

                                   where 

!− !! !
!!

! !
! = !!!!!!!

 Simple least squares, 
non-optimal 

That is, we have a choice as to how we measure distance …. 

Σ = I!
 Weighted least squares, 

partially optimized 

 Generalized linear 
regression,             
fully optimized 



!− !! !
!!Minimizing                              yields 

! = (!!!!!!)!!!!!!!!!

! = !"!!!!!Let                   where                        .  ! = !"#$(!!,… ,!!)!!!

! = (!!!!!!!!!)!!!!!!!!!!!!

Thus the signals X and observations Y are being 
rotated and scaled 

Then 

= (!!!)!!!!!!

! = !!!/!!!!!!
! = !!!/!!!!!

Where 



anthropogenic factors account for a significant part of recent
observed changes, whereas internal and naturally forced
variations alone, at least as simulated by current models, cannot
explain the observed changes. In addition, there are physical
arguments for attributing the changes in the vertical profile of
temperature to anthropogenic influence (Section 12.3.2).

12.4.3 Optimal Fingerprint Methods

The use of “optimal” techniques can increase the detectability
of forced climate changes. These techniques increase the
signal-to-noise ratio by looking at the component of the
response away from the direction of highest internal variability
(see, e.g., Hasselmann, 1979, 1997, 1993; North et al., 1995;
see also Box 12.1 on optimal detection and Appendix 12.1).
Several new approaches to the optimal detection of anthro-
pogenic climate change have been undertaken since the SAR.
We focus on optimal detection studies that use a single pattern
of climate change in the following section. Attribution (see
Section 12.1.1), which requires us to consider several signals
simultaneously, will be considered in Sections 12.4.3.2 and
12.4.3.3. 

12.4.3.1 Single pattern studies
Since the SAR, optimal detection studies of surface temperature
have been extended (Hegerl et al., 1997, 2000; Barnett et al.,
1999) and new studies of data other than surface air temperature
have been conducted (Allen and Tett, 1999; Paeth and Hense,
2001; Tett et al., 2000).

Surface temperature patterns
The Hegerl et al. (1996) optimal detection study was extended
to include more recent estimates of internal variability and
simulations with a representation of sulphate aerosols (Hegerl
et al., 1997). As in the previous study, different control simula-
tions were used to determine the optimal fingerprint and the
significance level of recent temperature change. The authors
find significant evidence for a “greenhouse gas plus sulphate
aerosol” (GS) fingerprint in the most recent observed 30-year
temperature trends regardless of whether internal variability is
estimated from models or observations. The 30-year trend
ending in the 1940s was found to be significantly larger than
expected from internal variability, but less so than the more
recent trends. This work has been extended to include other
models (Figure 12.10a; see also Barnett et al., 1999: Hegerl et

721Detection of Climate Change and Attribution of Causes

Box 12.1: Optimal detection

Optimal detection is a technique that may help to provide a clearer separation of a climate change fingerprint from natural internal
climate variations. The principle is sketched in Figure 12.B1, below (after Hasselmann, 1976).

Suppose for simplicity that most of the natural variability can be described in terms of two modes (well-defined spatial patterns) of
variability. In the absence of climate change, the amplitudes of these two modes, plotted on a 2D diagram along OX and OY will
vary with time, and for a given fraction of occasions (usually chosen as 95 %), the amplitude of each mode will lie within the shaded
ellipse. Suppose we are attempting to detect a fingerprint that can be made up of a linear combination of the two patterns such that
it lies along OB. The signal to noise ratio is given by OB/OBn. Because our signal lies close to the direction of the main component
of variability, the signal to noise ratio is small. On the other hand, we can choose a direction OC that overlaps less with the main
component of natural variability such that the signal to noise ratio OC/OCn for the component of the signal that lies in direction
OC is larger even though the projected signal OC is smaller then the full signal OB. Optimal detection techniques merely choose
the direction OC that maximises the signal to noise ratio. This is equivalent to general linear regression (see Appendix 12.1). A good
estimate of natural internal variability is required to optimise effectively.
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IPCC WG1 TAR Box 12.1 
(after Hasselmann, 1976) 

Optimization 
•  maximize S/N ratio by projecting observations onto  

the signal component that is least affected by noise 



   Applying the simple OLS form 



Observations Y	


– Most studies of surface air temperature use  

•  decadal averages and some kind of spatial averaging 
–  To reduce noise from internal variability 
–  To reduce the dimension of Y 

– Recent studies (e.g., Jones et al, 2013) use 
•  Gridded (5°×5°) monthly mean surface temperature 

anomalies (e.g., HadCRUT4, Morice et al, 2012) 
•  Reduced to decadal means for 1901-1920, 1911-1920 

… 2001-2010 (11 decades) 
•  Often spatially reduced using a “T4” spherical harmonic 

decomposition ⇒ global array of 5°×5°decadal 
anomalies reduced to 25 coefficients 

•  Yn×1 therefore has dimension n=11×25=275 



Signals Xi, i=1, …, s	


– Number of signals s is small 

•  s=1  ALL 
•  s=2  ANT and NAT 
•  s=3  GHG, OANT and NAT 
•  s=4  … 

– Can’t separate signals that are “co-linear” 
– Signals estimated from either  

•  single model ensembles (size 3-10 in CMIP5) or  
•  multi-model ensembles (~172 ALL runs available in 

CMIP5 from 49 models, ~67 NAT runs from 21 models , 
~54 GHG runs from 20 models) 

– Process as we do the observations 
•  Transferred to observational grid, “masked”, centered, 

averaged using same criteria, etc. 



Examples of forced signals 
Solar Volcanic 

GHGs Ozone 

Direct SO4 aerosol All 

PCM simulated 
20th century 
temperature 
response to 
different kinds 
of forcing 

IPCC WG1 AR4 Fig. 9.1 



The generalized regression estimator of β is 

! = (!!!!!!)!!!!!!!!!

•  Constraints on dimensionality 
–  Need to be able to invert covariance matrix 
–  Covariance needs to be well estimated 
–  Climate model should represent internal variability well 
–  Should be able to represent signal vector well 

!!

Need an estimate    of Σ	


•  Usually estimated from control runs 
•  Even with decadal+T4 filtering, Σ is 275x275 

•  need >275 110-year “chunks” of control run for a full-
rank estimate 

 Need further dimension reduction  

!!



A frequently used dimension reduction approach is 
projection onto the low order EOFs of  !!

! = !"!!!
!!! = !!! = !!
! = !"#$(!!,… ,!!)!

!! ≥ !! ≥ ⋯ ≥ !! ≥ !!

! = !!!!
!

!!!
!!!where!!!!! = !!!! !

!"# !! = !!!!and!!!"#(!!, !!) = !!!for!!! ≠ !!



Further constraint on estimating Σ	


–  To avoid bias, optimization and uncertainty analysis 

should be performed separately (Hegerl et al, 1997) 

 Require two independent estimates of of the covariance 
matrix 

–  An estimate      for the optimization step and to 
estimate scaling factors β	



–  An estimate      to make estimate uncertainties and 
make inferences 

•  Residuals from the regression model,  
 are used to assess misfit and evaluate model based 
estimates of internal variability 

!!!

!!!

! = !− !!!



  Step-by-step procedure 



Review of Basic Procedure 
1.  Determine domain, period of interest, filtering  

•  Global, 1901-2010, T4 spatial smoothing, decadal averaging 
2.  Gather all data 

•  Observations 
•  Ensembles of historical climate runs  

•  ALL and NAT runs (to separate ANT and NAT responses in obs)  
•  Control runs (no forcing, needed to estimate internal variability) 

3.  Process all data 
•  Observations 

•  homogenize, center, grid, identify where missing 
•  Historical climate runs 

•  “mask” to duplicate “missingness” of observations,  
•  process each run as the observations (no need to homogenize)  
•  ensemble average to estimate signals 

•  Control runs 
•  divide into “chunks”, re-label years  
•  process as the historical runs 



1901-1910 1901-1910 1911-1920 1911-1920 1921-1930 1921-1930 1931-1940 1931-1940 1941-1950 1941-1950 1951-1960 1951-1960 1961-1970 1961-1970 1971-1980 1971-1980 1981-1990 1981-1990 1991-2000 1991-2000 

Observations (HadCRUT4) Multi-model mean (ALL forcings) 

2001-2010 2001-2010 

11 decades (1901-1911 to 2001-2011) 

1901-1910 1901-1910 1911-1920 1911-1920 1921-1930 1921-1930 1931-1940 1931-1940 
1941-1950 1941-1950 1951-1960 1951-1960 1961-1970 1961-1970 1971-1980 1971-1980 1981-1990 1981-1990 1991-2000 1991-2000 2001-2010 2001-2010 

Two (of hundreds) pre-industrial control run “chunks” (CanESM2) 



Basic procedure … 
4.  Estimate internal covariance structure for optimization  

•  Use 1st sample of ν1 control run chunks to estimate 

5.  Fit the regression model in the reduced space 
•  Select an EOF truncation k	


•  Obtain an estimate of the scaling factors 

•  and an estimate of the residuals 

6.  Evaluate goodness of fit … 

!!!

! = !− !!!
! = (!!!!!!!)!!!!!!!!!!



Basic procedure … 
6.  Assess whether the residual variance in the observations is 

consistent with model estimated internal variability 

•  Allen and Tett (1999) 

•  Note that this is conditional on      (i.e., it ignores sampling 
variability in the optimization, Allen and Stott, 2003). 

•  Ribes et al (2012a) show that 

    provides a better approximation for the residual consistency test 

!!!!!!!~ ! − ! !!!!,!! !
!!!

!!!!!!!~
!!(! − !)
!! − ! + 1

!!!!,!!!!!! !



Basic procedure … 
7.  Determine EOF truncation 

point via residual consistency 
test 

–  Global surface air 
temperature 

–  One signal (“GS”) 
–  270 dimensions (5-

decades, 30°×40° spatial 
averages) 

–  1600-yr of control runs 
(covariance estimated 
from 10-year overlapping 
chunks) 

–  Residual consistency 
evaluated with 

Zwiers and Zhang, 2003, Fig 1 

!!!!!!!~ ! − ! !!!!,!! ≈ !!!!!
!



JONES ET AL.: ATTRIBUTION OF TEMPERATURES WITH CMIP5

Table 7. Global Mean Linear Trends for the Observed Data Sets and Both CMIP3 and CMIP5 MME (K per 100 Years)a

1901–2010 1901–1950 1951–2010 1979–2010 2001–2010

HadCRUT4 0.72 1.02 1.09 1.78 0.35
GISS 0.64 0.81 1.05 1.55 0.10
NCDC 0.75 0.95 1.14 1.60 0.17
JMA 0.74 0.90 1.06 1.27 0.16
historical 0.65 (0.33,1.11) 0.65 (0.24,1.11) 1.23 (0.63,1.93) 2.11 (0.91,3.23) 1.87 (–0.47,4.92)
historicalNat 0.00 (–0.13,0.13) 0.43 (0.08,0.78) –0.14 (–0.58,0.15) 0.16 (–0.79,1.07) 0.07 (–2.49,2.43)
historicalGHG 1.09 (0.81,1.59) 0.37 (0.05,0.72) 1.93 (1.47,2.74) 2.07 (1.26,3.13) 1.93 (0.41,4.14)

aThe average of the MME trends together with the 2.5–97.5% range (in brackets) are given for the CMIP experiments (given equal weight to each
model). All observations and model simulations have same temporal-spatial coverage as HadCRUT4. Trends calculated for a period when less than 10
years have missing data, apart from the 2001–2010 when trend is calculated only when all 10 years are available.

et al., 2008], and not just contrast the MME mean with an
observational data set [e.g., Wild, 2012].

[33] A comparison of the variability of the global mean
of the models with the observations on different timescales
is shown in Figure 5 as a power spectral density (PSD) plot
(see also Figures S10 and S11 for the individual models
PSDs). The method used is described elsewhere [Mitchell
et al., 2001; Allen et al., 2006; Stone et al., 2007; Hegerl
et al., 2007]. The spectra contain variance from internal vari-
ability and the response to external forcings, as the data
has not been de-trended. The CMIP3 and CMIP5 histori-
cal MME encompass the variability of all four observational
data sets on all the timescales examined. The historicalNat
MME starts to diverge from the observations after peri-
odicities of 20 or so years and for periodicities of about
35 years no historicalNat simulations have variability as
large as observed. Together with Figure 4 this is strong evi-
dence that observed temperature variations are detectable
over internal and externally forced natural variability
on the longer timescales, whereas on timescales shorter
than 30 years changes are indistinguishable [Hegerl and
Zwiers, 2011].

[34] Figure 6 shows a summary of three statistical indica-
tors for the CMIP simulations compared with HadCRUT4,
on a Taylor diagram [Taylor, 2001]. The Taylor diagram
enables the simultaneous representation of the standard devi-
ation of each simulation and HadCRUT4’s global annual
mean TAS, the root mean square error (RMSE) and cor-
relation of the simulations with HadCRUT4. The period
1901–2005 is used, to increase the number of simulations
that can be examined, with global annual means having their
whole period mean removed. Perhaps unsurprisingly the his-
toricalNat (green points in Figure 6) simulations have the
lowest standard deviation and the lowest correlation with
HadCRUT4. None of the historicalNat simulations have a
RMSE lower than 0.2 K. All the historicalGHG simulations
have correlations with HadCRUT4 around 0.8 and RMSEs
up to 0.4 K. The historical simulations have some of the
simulations with the lowest RMSE with correlations with
HadCRUT4 varying from just above 0.4 up to just below
0.9. While the historicalNat simulations are clustered away
from the other simulations, there is some overlap between
the clusters of historical and historicalGHG simulations.

5.2. Continental-Scale Mean Temperatures
[35] Climate changes from internal variability and exter-

nal forcings would not be expected to be uniform across
the globe [Santer et al., 1995]. We examine annual mean

temperatures over sea, land and six continental land areas.
We group pre-defined regions used by the IPCC in a report
on climate extremes [SREX, 2012] into six continental
regions (Figure 7 insert). These SREX areas (Figure 3.1 and
Table 3.A-1 in SREX [2012]) do not always align perfectly
with common geographic or political definitions of the conti-
nents, but for convenience we group and call the areas North
America, South America, Africa, Europe, Asia, Australasia
and Antarctica (insert in Figure 7). All data, models and
HadCRUT4, are processed in the same way to construct
the global and regional land and global ocean temperatures.
We use the proportion of land area in each of HadCRUT4’s
grid boxes to deduce which grid boxes, in HadCRUT4 and
the models, to use. Only those grid boxes where there is
25% or more land in HadCRUT4 are used to calculate land
temperatures and only those grid boxes with 0% land are
used to calculate ocean temperatures (see the supporting
information for further details).

[36] The observed (HadCRUT4) data coverage across
the regions changes substantially over the period being
examined (Figure S6). Europe has the least amount of
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Figure 5. Power spectral density for 1901–2010 period for
both CMIP3 and CMIP5 simulations and the observations.
Analysis on annual mean data as shown in Figure 4. Tukey-
hanning window of 97 years in length applied to all data.
The central 90% ranges of the historical and historicalNat
multi-model ensemble are shown separately as shaded areas.
The 5–95% ranges are calculated given equal weight to each
model (see section 4.2). The HadCRUT4, GISS, NCDC, and
JMA global mean near surface temperature observations are
as shown in the key.
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Models adequately represent surface temperature 
variability on global scales … 

Variability of annual global mean surface temperature (1901-2010) estimated from 
observations (4 datasets) and ALL and NAT forced models (CMIP3 and CMIP5) 

Jones et al, 2013, Fig 5 
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Chapter 9 Understanding and Attributing Climate Change

9.4.1.4 The Infl uence of Greenhouse Gas and Total 
Anthropogenic Forcing on Global Surface 
Temperature

Since the TAR, a large number of studies based on the longer 
observational record, improved models and stronger signal-
to-noise ratio have increased confi dence in the detection of 
an anthropogenic signal in the instrumental record (see, e.g., 
the recent review by IDAG, 2005). Many more detection and 
attribution studies are now available than were available for the 
TAR, and these have used more recent climate data than previous 
studies and a much greater variety of climate simulations with 
more sophisticated treatments of a greater number of both 
anthropogenic and natural forcings. 

Fingerprint studies that use climate change signals estimated 
from an array of climate models indicate that detection of an 
anthropogenic contribution to the observed warming is a result 
that is robust to a wide range of model uncertainty, forcing 
uncertainties and analysis techniques (Hegerl et al., 2001; 
Gillett et al., 2002c; Tett et al., 2002; Zwiers and Zhang, 2003; 
IDAG, 2005; Stone and Allen, 2005b; Stone et al., 2007a,b; 
Stott et al., 2006b,c; Zhang et al., 2006). These studies account 
for the possibility that the agreement between simulated and 

observed global mean temperature changes could be fortuitous 
as a result of, for example, balancing too great (or too small) a 
model sensitivity with a too large (or too small) negative aerosol 
forcing (Schwartz, 2004; Hansen et al., 2005) or a too small (or 
too large) warming due to solar changes. Multi-signal detection 
and attribution analyses do not rely on such agreement because 
they seek to explain the observed temperature changes in terms 
of the responses to individual forcings, using model-derived 
patterns of response and a noise-reducing metric (Appendix 
9.A) but determining their amplitudes from observations. As 
discussed in Section 9.2.2.1, these approaches make use of 
differences in the temporal and spatial responses to forcings to 
separate their effect in observations. 

Since the TAR, there has also been an increased emphasis 
on quantifying the greenhouse gas contribution to observed 
warming, and distinguishing this contribution from other factors, 
both anthropogenic, such as the cooling effects of aerosols, and 
natural, such as from volcanic eruptions and changes in solar 
radiation. 

A comparison of results using four different models (Figure 
9.9) shows that there is a robust identifi cation of a signifi cant 
greenhouse warming contribution to observed warming that is 
likely greater than the observed warming over the last 50 years 

Figure 9.8. As Figure 9.7, except for continental 
mean temperature. Spectra are calculated in the 
same manner as Figure 9.7. See the Supplementary 
Material, Appendix 9.C for a description of the 
regions and for details of the method used. Models 
simulate variability on decadal time scales and 
longer that is consistent with observations in all 
cases except two models over South America, fi ve 
models over Asia and two models over Australia (at 
the 10% signifi cance level). 
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Basic procedure …. 
8.  Make inferences about scaling factors 

•  OLS expression that ignores uncertainty in      looks like… !!!

(!− !)!!!!!(!− !)~!!!,!! !
!where!!!! = !!!!!!!!!!!and!!! = !!!!!!!

!!!!!!!!!!



A “typical” 1-signal detection result 

Detection of “GS” signal in Eurasian surface air temperature 

14 
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Figure 2: Estimated GS signal scaling factors and their 95% confidence intervals for 1950-1999 Eurasian 

continent (EA) annual mean temperatures. Noise1 (Noise2) indicates the results obtained when control 

data set N1 (N2) is used for optimization. Sig (nonsig) indicates a scaling factor significantly (not 

significantly) greater than zero at the 5% level.  

 

Zwiers and Zhang, 2003, Fig 2 



Zhang et al, 2013, Fig. 2 

detection becomes more difficult for the regions overall.
Single-signal nonoptimized analyses show essentially the
same results, indicating that nonoptimized analyses pro-
duce robust results in this case, although scaling factor esti-
mates are in general associated with larger uncertainty
bands when the signal strength is strong (e.g., ALL, ANT,
and Figure S6) than those resulting from optimal detection.

4.2. Two-Signal Optimal Fingerprint Analysis
[19] Figure 3 shows the best estimate scaling factors for

ANT and NAT in two-signal analyses of Northern
Hemisphere land in three regions (NA+EU+AS), together
with their marginal confidence intervals and joint confidence
regions. Even when separately estimating the naturally
forced signal, the anthropogenic influence is detected at the
10% significance level in both RX1day and RX5day. The
ANT scaling factors are significantly greater than zero and
consistent with one in both cases. The NAT scaling factors
are not significantly different from zero. This indicates that
the simulated ANT response is consistent with observed
changes while the simulated NAT response is not signifi-
cantly contributing to observed changes. The two-signal
analyses conducted in one or two regions (NH or ML+TR,
and supporting information Figure S13), and with ANT and
NAT simulated by the same GCMs, yield similar results
(supporting information Figure S12).

a: RX1day b: RX5day

Figure 3. Results from two-signal optimal detection ana-
lyses of extreme precipitation indices. for (a) RX1day
and (b) RX5day when using 5 year mean PI in three
(NA+EU+AS) regional averages combined with weighting
to NA, EU, and AS corresponding to areas of available data
grids. The intersections of the two error bars represent best es-
timates of the scaling factors for ANT and NAT. The 5–95%
marginal confidence intervals of the scaling factors are
displayed as error bars. The 5–95% joint confidence regions
are represented by ellipses.

Figure 2. Results from single-signal optimal detection analyses of extreme precipitation indices for (top) RX1day and (bottom)
RX5day. Best estimates (data points) and 5–95% confidence intervals (error bars) of the scaling factors are displayed for ALL,
ANT, and NAT, when using 5 year mean PI averaged over midlatitude (ML), northern tropics (TR), western Hemisphere land
(NA), western East Hemisphere land (EU), and eastern East Hemisphere land (AS), Northern Hemisphere (NH), and when using
two regional averages (ML+TR) or three regional averages (NA+EU+AS). Refer to supporting information Figure S6 for
results from nonoptimized detection analyses.

ZHANG ET AL.: HUMAN INFLUNECE ON EXTREME PRECIPITATION
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A “typical” 2-signal detection result 
Northern Hemisphere 
1-day and 5-day 
extreme precipitation, 
1951-2005 

Details: 
-  Two signals (ANT, NAT) 
-  33-dimensions (11 5-yr 

averages, 3 regions) 
-  54 ALL runs (14 GCMs) 
-  34 NAT runs (9 GCMs) 
-  >15000-yr of control 

simulations (31 GCMs) 
-  total of ~455 “chunks” 

for estimating 
covariance matrices 



Calculating attributed change 
Usual approach is to calculate trend in signal, 
multiply by scaling factor, and apply scaling factor 
uncertainty 

Final Draft (7 June 2013) Chapter 10 IPCC WGI Fifth Assessment Report 

Do Not Cite, Quote or Distribute 10-113 Total pages: 132 

 

 
 
Figure 10.5: Assessed likely ranges (whiskers) and their mid-points (bars) for attributable warming trends over the 
1951–2010 period due to well-mixed greenhouse gases (GHG), other anthropogenic forings (OA), natural forcings 
(NAT), combined anthropogenic forcings (ANT), and internal variability. The HadCRUT4 observations are shown in 
black with the 5–95% uncertainty range due to observational uncertainty in this record (Morice et al., 2012). 
 

Observed warming 
trend and 5-95% 
uncertainty range 
based on HadCRUT4 
(black). 

Attributed warming 
trends with assessed 
likely ranges (colours).  

IPCC WG1 AR5, Fig 10.5 



   Total least squares 

Do we really know the signal perfectly, and how do proceed if 
we don’t know it completely? 



Statistical model for Xi	


– a single climate simulation j, j=1,…mi, for 

forcing i produces 

!!,! = !! + !!,!!
Simulated 110 
year change 

vector 

Deterministic 
forced 

response 

Internal 
variability = + 

!!,. = !! + !!,.!⇒ 
Σ!! =

1
!!

Σ!!!where 

That is, we assume that the δi,j ’s are independent,  
and that they represent repeated realizations of the  
internal variability ε of the observed system. 



Leads to a more complicated regression model	



Columns of    represent ensemble averages (mi ensemble 
members averaged to form column i) 

Columns of Δ are independent of each other, and of ε, with the 
same covariance structure as ε except scaled by 1/mi	



For simplicity, scale     by                                             

  Columns of Δ have same covariance matrix as ε	


  Need to remember to undo this later 

!!

!! ! = !"#$( !!!!,… , !!)!

! = !!"#$%& + !!
! = !!"#$%& + !! !!"#$%& = !!"#$%&!!!!



Fitting the more complicated regression model	



! = !!"#$%& + !!
! = !!"#$%& + !! !!"#$%& = !!"#$%&!!!!

Fitting involves finding the XForced and β that minimize the “size” of 
the n×(s+1) matrix of residuals [Δ, ε] 

The assumptions about the covariance structure determine how 
the “size” of the matrix of residuals is measured 

Note that because we scaled    , the estimate of XForced will be too 
large by a factor of M, which means that we will have to adjust the 
estimated XForced and β to compensate 

!!



Find XForced and β that maximize joint likelihood of ε and 
Δ	



 minimize the “size” of the n×(s+1) matrix of residuals [!− !!"#$%& ,!− !!"#$%&!]!!
n×s n×1 

taking into account its covariance structure. 

To take care of the covariance structure we “prewhiten” with ! = !!! !!!!

[!− !!!"#$% ,!− !!!"#$%!] !
!!!

 after prewhitening, we minimize 

! !
!!!where           is the squared Frobenius norm (sum of eigenvalues of ATA)	



! = !!"#$%& + !!
! = !!"#$%& + !! !!"#$%& = !!"#$%&!!!!



 minimize 

!,! − !!"#$%&,!!!"#$%! !
!!! minimize 

Eckart-Young-Mirsky matrix approximation theorem (Huffel and 
Vandewalle, 1991, pp31) states that: 

the minimum loss (measured as the least squared Frobenius 
norm) between a matrix and its p-lower-rank approximation is the 
sum of the last p eigenvalues from the singular value 
decomposition (SVD) of the original matrix.  

We require an approximating matrix of only one rank lower 

Note that the matrix on the left is of rank s+1 
     right is of rank s 

[!− !!"#$%& ,!− !!"#$%&!] !
!!!

 minimum loss is given by the last eigenvalue ν1+s 
in the SVD of the left hand matrix 



The minimum loss approximation is obtained when  

                             (the last singular vector of            ) and 

Don’t forget to rescale    and                with     

! = !!!!!!

Let 

n×(s+1)         (s+1)×(s+1)              (s+1)x(s+1) 

[!,!]!

[!!"#$%&,!!"#$%&] = !"#$% !!,… ,!!,! !!!

[!,!] = !"#$% !!,… ,!!,!!!! !!!

!! !!"#$%& ! !!!
!



!,! − !!"#$%&,!!!"#$%! !
!!!

Aside – the problem of minimizing	



!!"#$%& = !!!For OLS we take 

!,! − !!"#$%&,!!"#$%&! !
! = !,! − !,!! !

!!
= !− !! !

!!

That is, we find an approximation for a vector, 
rather than a matrix, but measuring distance 
essentially the same way 

is entirely parallel to the generalized linear 
regression problem. 	





Statistical Inferences under TLS 
•  Residual consistency test 

–  Exact distribution not available analytically because the 
estimation problem is non-linear  

–  Approximate distribution suggested by Allen and Stott (2003) is 

–  Ribes et al (2012a) show, using Monte Carlo simulations, that 
this test operates at actual significance levels well below 
specified levels for reasonable values of k, v1, v2	



•  Confidence intervals for scaling factors 

–  Based on approximation  

–  Given a critical value C of        , find       that satisfy    
–  Nonlinearity makes intervals/regions non-symmetric, particularly 

when signal is weak relative to noise  

!!!!!!!~ ! − ! !!!!,!! ≈ !!!!! !when!!! ≫ !!

!! = !!! !!!!!! − !!!!!!!~!!!,!! !
!!,!! !! !′s! !! = !! !



5-yr means. Figure 7 shows two-signal analysis results
for four extreme temperature indices when using 5-yr-
mean PI anomalies averaged over the globe and conti-
nental regions. Overall detection results for ANT are
found to resemble those based on decadal means, in-
dicating the robustness of our results to the dimension
increase. However, there are some notable differences.
NAT detection occurs less frequently and signal sepa-
ration between ANT and NAT becomes more limited.
Also, the residual consistency test fails more frequently
than in the low-dimensional case, reflecting larger dis-
crepancies between observed and simulated variability
at shorter time scales.
The results shown in Fig. 7 are based on ANT and

ALL signals estimated from all available models and
thus the estimated NAT signal may be confounded with
the influence of model difference (see Table 1). We
therefore also test the robustness of our detection re-
sults to this model difference by redoing our analysis
using the four models that provided both ANT and
ALL runs [CCSM3, ECHAM5/MPI-OM, ECHO-G, and
MIROC3.2(medres); Table 1]. Figure 8 shows two-signal

detection results for global- and continental-mean ex-
treme temperature PIs obtained when using the same
four models to estimate the ANT and NAT signals.
Compared with the full model case (Fig. 7), the main
results, including ANT signal detection and separation
from NAT, are not affected much by the different model
samples, suggesting insensitivity of our findings to the
model difference.
Signal separation is further described by examining

joint 90% uncertainty ranges for the ANT and NAT
scaling factors for the GLB domain (Fig. 9). It is shown
that the 90% uncertainty contours exclude the origin
(0, 0) for all temperature extremes, meaning that ANT
and NAT are jointly detected through two-way regres-
sion. However, when looking at one-dimensional 90%
ranges of the scaling factors, for cold extremes, only
ANT is detected and also model underestimation is
larger by a factor of 3–4. In warm extremes, both ANT
and NAT are detected and model underestimation is
not as large, implying better agreement with observa-
tions in warm seasons, which may be partly related to
the seasonality of volcanic cooling impact as discussed

FIG. 9. The joint 90% uncertainty range for the ANT and NAT scaling factors when temperature extreme indices are regressed onto
ANT (x axis) andNAT signals (y axis) simultaneously: (top) global-mean cold extremes (TNn, TXn, and TNn1TXn) and (bottom)warm
extremes (TNx, TXx, and TNx1 TXx). The error bars indicate one-dimensional 5%–95% ranges of the scaling factors for each forcing.
The dashed horizontal/vertical lines represent zero and unity.
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Joint 90% confidence region for ANT 
and NAT detection in TNn and TXx 

Min et al, 2013, Fig. 9 

Details: 1951-2000 TNn and TXx from HadEX (Alexander et al, 2006), decadal 
time averaging, “global” spatial averaging, CMIP3 models (ANT – 8 models, 27 
runs; ALL – 8 models, 26 runs; control – 10 models, 158 chunks) 



  Covariance matrix estimation 



More on covariance matrix 
estimation 

•  A key source of uncertainty is the estimate of the covariance 
matrix 

•  Even with CMIP5, we often do not have enough information to 
estimate Σ well 

•  Several recent studies have attempted to avoid problems with 
covariance estimation by either  
–  not fully optimizing (e.g., Polson et al, 2013; TLS without 

prewhitening)  
–  Keeping dimension small (e.g., Sun et al, 2014; Najafi et al, 2014; 

Zhang et al, 2013; Min et al, 2013). 
•  Keeping dimension small 

–  Increases signal-to-noise ratio 
–  Eliminates the need for EOF truncation 
–  Forces explicit space- and time-filtering decisions prior to 

conducting the D&A analysis 
–  Involves a trade off (e.g., we might lose the ability to distinguish 

between different signals) 



More on covariance matrix 
estimation 

•  An alternative approach is to use a more sophisticated estimator 
that the sample covariance matrix 

•  Ribes (2009, 2012a, 2012b) suggest using the regularized estimator 
of Ledoit and Wolf (2004), which is given by a weighted average of 
the sample covariance matrix and the identity matrix 

•  This estimate is always well conditioned, is consistent, and has 
better accuracy when sample size is small %

•  Since this estimator is full rank, EOF truncation is not needed 
•  Its application requires careful predetermination of the level of signal 

detail we require from the observations 
•  For example, Ribes et al (2012a) consider the effect of different 

amounts of spatial filtering of surface temperature 
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  A further challenge 



A further challenge - EIV 

•  We assumed that columns of Δ have the same 
covariance structure as ε	



•  That is, we assumed that only internal variability 
makes the signals uncertain 

•  But model and forcing differences also make the 
signals uncertain 

•  Maybe need a more complex representation for Δ? 
•  See Huntingford et al (2006), Hannart et al (2014) 

! = !!"#$%& + !!
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  Conclusions 



 Conclusions 
•  The method continues to evolve 
•  Thinking hard about regularization is a good 

development (but perhaps not most critical) 
•  Some key questions 

– How do we make objective prefiltering choices? 
– How should we construct the “monte-carlo” 

sample of realizations that is used to estimate 
internal variability? 

– Similar question for signal estimates 
– How should we proceed as we push to answer 

questions about extremes? 



Thank you 
Photo: F. Zwiers 
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