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Observed Climate Change

“Warming of the climate system is unequivocal, and since
the 1950s, many of the observed changes are
unprecedented over decades to millennia. The atmosphere
and ocean have warmed, the amounts of snow and ice
have diminished, sea level has risen, and the
concentrations of greenhouse gases have increased.”

IPCC-WG1-AR5 SPM
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Observed change in surface temperature 1901-2012
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“The atmospheric concentrations of carbon dioxide,
methane, and nitrous oxide have increased to levels
unprecedented in at least the last 800,000 years.

Carbon dioxide concentrations have increased by 40%

since pre-industrial times ... " IPCC WG1 AR5 SPM
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“Total radiative forcing is positive, and has led to an uptake of
energy by the climate system.” IPCC WG1 AR5 SPM
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But knowing that the forcing is
positive does not mean you have
detected the cause of the observed

warming ...



Attribution
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Attribution results

TAR (2001)
— “most of the observed warming over the last 50 years is Jii<z]y to
have been due to the increase in greenhouse gas concentrations”

AR4 (2007)

— Jli<=]y replaced with very likely
— “GHGs Ji.<z]y would have caused more warming than observed”

ARS (2013)
— “lItis extremely likely that human influence has been the dominant
cause of the observed warming since the mid-20th century.”

— “Greenhouse gases contributed a global mean surface warming Ji<zly
to be in the range of 0.5°C to 1.3°C over the period 1951 to 2010 ...”
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Attribution Summary

 Warming — human influence has ...
— caused more than half of the observed increase in global mean
surface temperature from 1951-2010 (extremely likely).
 the GHG contribution was between 0.5K and 1.3K (/i<=1Y)

* internal variability alone cannot account for the observed warming
since 1951 (virtually certain).
— caused significant warming on each continent except Antarctica
(112<21Yy)
— contributed to the warming of the troposphere since 1961 (1ii<=]v)
with a dominant influence from GHGs

— contributed to the cooling of the lower stratosphere since 1979 (vzry
li2<z]y) with a dominant influence from ozone depleting substances.

— contributed substantially to global sea level rise since the 1970s
(very likely).

IPCC WG1 AR5 Chapter10



Attribution Summary (cont'd)

« Climate extremes — human influence has ...

— contributed to the observed changes in temperature extremes since the
mid-20th century (vzry l1c2]y).

— substantially increased the probability of occurrence of heat waves in some
locations (/1:<=] ).

— contributed to intensification of heavy precipitation on global scales

— Thereis /o, ~os/l</= - = in attribution of changes in tropical cyclone
activity to human influence.

« Other aspects — human influence has ...
— contributed to changes in the hydrological cycle (/1= /711 < ciiile)=r)e=).
— contributed to sea ice loss (v=ry liicz]y) and snow cover loss (11i<=]y).

IPCC WG1 ARS Chapter10



Overview of the methodology




Definition of D & A

« Detection of change is defined as the process of
demonstrating that climate or a system affected by
climate has changed in some defined statistical sense
without providing a reason for that change.

 Attribution is defined as the process of evaluating the
relative contributions of multiple causal factors to a
change or event with an assignment of statistical
confidence.

* In WG1, casual factors usually refer to external
influences, which may be anthropogenic (GHGs,
aerosols, ozone precursors, land use) and/or natural
(volcanic eruptions, solar cycle modulations).

IPCC Good Practice Guidance Paper on Detection and Attribution, 2010



Four core elements

Observations of climate indicators

An estimate of external forcing

—how external drivers of climate change have evolved
before and during the period under investigation

—e.g., GHG and solar radiation

A quantitative physically-based understanding of how
external forcing might affect these climate indicators.

—normally encapsulated in a physically-based model

An estimate of climate internal variability

—often, but not always, derived from a physically-based
model

IPCC WG1 AR5 Chapter 10



General assumptions

Key forcings have been identified
Signals are additive
Noise is additive

The large-scale patterns of response are
correctly simulated by climate models



Methodology

Methods are determined by

— Assumptions about sources of uncertainty
— Whether signals are “optimized”
Invariably D&A relies heavily on climate
models

— D&A is a “small sample” statistical problem

The objective is always to assess the
evidence contained in the observations.

Methods are simple, yet complex.




Non-optimal D&A approaches




Non-optimal approach

Qualitatively, we could
evaluate the consistency
of observed changes with
modelled changes

. . -
Our industry has
warmed oceans, air, lands — changed rains —
melted ice — raised seas.
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Non-optimal approach

1. Use climate models to estimate “form” of signal
— Usually the mean F of an ensemble of forced runs

2. Estimate amplitude of signal in the observations

— A scaled inner-product between a normalized signal
and observations

S=(F-T)

signal ‘>bservations

— Signal could be a pattern of change in space, or in
space and time, or across multiple variables



Non-optimal approach

3. Compare S with amplitude of signal in differently forced
model runs

4. Compare S with natural variability of signal amplitude in
control simulations
— Calculate amplitude in similar length control run segments
— Basis for a test of the strength of the signal in the observations

 Note that model output is processed to match
observations

— it is masked to be “missing” where/when observations are
missing, etc.

— the fact that data are missing may have some impact ... we want
to be sure we are not detecting an “aliased” signal
5. Demonstrate that alternative signals are unlikely to be
able to explain observed change



Non-optimal approach

« Some recent studies taking this approach
Include
— Barnett et al, 2005; Pierce et al., 2006

« anthropogenic influence on ocean temperature
structure

— Santer et al, 2007
« SSTs in tropical cyclone formation regions

— Barnett et al, 2008

« western United States surface hydrology
» temperature, snow pack and stream flow combined

— Marvel and Bonfils, 2013

 zonal distribution of global precipitation



Observed and simulated variability
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Signal Amplitude
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Optimal D&A Approaches




Optimal approach

» Originally developed in a couple of different ways
— Optimal filtering (North and colleagues, early 1980’s)
— Optimal fingerprinting (Hasselmann,1979; Hegerl et al, 1996; 1997)

* Variants of linear regression

— Ordinary least squares / Generalized least squares (Allan and Tett,
1999)

— Total least squares (Allan and Stott, 2003, Ribes et al, 2009, 2012a,b)
— Errors in variables (Huntingford et al, 2006, Hannart et al, 2014)



Observations (HadCRUT4) Multi-model mean (ALL forcings)
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S
Y=ZﬁiXi+£=XB+£
=1

Y - Observations
X -2 Expected changes — one vector for each “signal”

B - Regression coefficients — aka “scaling factors”

€ -2 Residuals — internal variability

Idea is to interpret the observations with a regression
model, where physics is used to provide representations
of expected changes due to external influences, statistics
IS used to demonstrate a good fit, and physics is used to
interpret the fit and rule out other putative explanations

Key statistical questions relate to the /4 .’s and residuals
E



Yzz,BiXi——s:XB €

Key assumptions

» Responses to forcings are additive

» Expected patterns of response in vectors X.are correct
* Residuals €, j=1, ..., n are zero-mean

* ... SOme more, discussed later

J

No assumptions about the “covariance structure’
of the residuals

This is a “small sample” statistical inference problem
(even if vector Y is big, covering essentially the globe
and the entire instrumental period)



To fit, chose B to minimizeHY _ XEH;

whereHZH% =7ZTx"17

That is, we have a choice as to how we measure distance ....

Z — I < Simple least squares,
non-optimal

2 = dlag (0'12, cer ) O-T%) < Weighted least squares,

partially optimized
01 o 00 Gl’n

), = . < Generalized linear
regression,

O-Tl,l coe O-Tl fully optimized



~1n2
Minimizing ”Y — XBHZ yields
B = Xiz-1x)~1xtx-1ly
Let £ = PAP! where A = diag(A4,...,4,)

Then B = (X!PA~1PIX) " 1X!PA-1PYY
— (XX)~1XtY
where X = A~1/2ptX
Y = A~1/2pty

Thus the signals X and observations Y are being
rotated and scaled



Optimization
« maximize S/N ratio by projecting observations onto
the signal component that is least affected by noise

Y

Y4
S.C
5

Q

IPCC WG1 TAR Box 12.1
(after Hasselmann, 1976)




Applying the simple OLS form
W R




Observations Y

— Most studies of surface air temperature use

« decadal averages and some kind of spatial averaging
— To reduce noise from internal variability
— To reduce the dimension of Y

— Recent studies (e.g., Jones et al, 2013) use

« Gridded (5°%5°) monthly mean surface temperature
anomalies (e.g., HadCRUT4, Morice et al, 2012)

 Reduced to decadal means for 1901-1920, 1911-1920
... 2001-2010 (11 decades)

« Often spatially reduced using a “T4” spherical harmonic
decomposition = global array of 5°x5°decadal
anomalies reduced to 25 coefficients

* Y, ., therefore has dimension n=11x25=275



Signals X, i=1, ..., s
— Number of signals s is small
« s=1 > ALL
+ =2 > ANT and NAT

e s=3 2 GHG, OANT and NAT
e 5=4 > ...

— Can'’t separate signals that are “co-linear”

— Signals estimated from either
* single model ensembles (size 3-10 in CMIP5) or

* multi-model ensembles (~172 ALL runs available in
CMIP5 from 49 models, ~67 NAT runs from 21 models ,
~54 GHG runs from 20 models)

— Process as we do the observations

« Transferred to observational grid, “masked”, centered,
averaged using same criteria, etc.



Examples of forced signals

(a)10

PCM simulated
20" century
temperature
response to
different kinds
of forcing

IPCC WG1 AR4 Fig. 9.1
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The generalized regression estimator of 8 is
B = Xtz 1x)"1xtx-1y

Need an estimate £ of 2
« Usually estimated from control runs
« Even with decadal+T4 filtering, 2 is 275x275

* need >275 110-year “chunks” of control run for a full-
rank estimate

=» Need further dimension reduction

« Constraints on dimensionality
— Need to be able to invert covariance matrix £
— Covariance needs to be well estimated
— Climate model should represent internal variability well
— Should be able to represent signal vector well



A frequently used dimension reduction approach is
projection onto the low order EOFs of X

Y = PAP!

PP = PPt =1
A = diag(A4, ..., A,)
}\.12}\.222}\.,120

n
- — t
€ = z e]-P]- where ej =& P]-
j=1

Var(e;) = A; and Cor(e;, e;) =0 for i # j



Further constraint on estimating 2

— To avoid bias, optimization and uncertainty analysis
should be performed separately (Hegerl et al, 1997)

=>» Require two independent estimates of of the covariance
matrix

— An estimate X, for the optimization step and to
estimate scaling factors

— An estimate £, to make estimate uncertainties and
make inferences

» Residuals from the regression model, € = Y — X8

are used to assess misfit and evaluate model based
estimates of internal variability
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Review of Basic Procedure

1. Determine domain, period of interest, filtering
« Global, 1901-2010, T4 spatial smoothing, decadal averaging
2. Gather all data
« Observations
« Ensembles of historical climate runs
* ALL and NAT runs (to separate ANT and NAT responses in obs)
« Control runs (no forcing, needed to estimate internal variability)
3. Process all data
* Observations
* homogenize, center, grid, identify where missing
 Historical climate runs
* “mask” to duplicate “missingness” of observations,
« process each run as the observations (no need to homogenize)
* ensemble average to estimate signals
« Control runs
 divide into “chunks”, re-label years
» process as the historical runs



Observations (HadCRUT4) Multi-model mean (ALL forcings)

11 decades (1901 1911 to 2001- 2011)

Two (of hundreds) pre-industrial control run “chunks” (CanESM2)




Basic procedure ...

4. Estimate internal covariance structure for optimization
« Use 15t sample of #, control run chunks to estimateX 4

5. Fit the regression model in the reduced space
« Select an EOF truncation k
« Obtain an estimate of the scaling factors

B = XtzIx)"1xtEy

- and an estimate of the residuals € = Y — X8

6. Evaluate goodness of fit ...



Basic procedure ...

6. Assess whether the residual variance in the observations is
consistent with model estimated internal variability

 Allen and Tett (1999)

* Note that this is conditional on fl(i.e., it ignores sampling
variability in the optimization, Allen and Stott, 2003).

* Ribes et al (2012a) show that

~ vo(k —s)
€y E~ 1 Fk—s,vz—k+1

vz—k

provides a better approximation for the residual consistency test



Basic procedure ...

7.
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Models adequately represent surface temperature
variability on global scales ...

10.0000 f — HadCRUT4 historical 5-95%iles

- — GISS historicalNat 5-95%iles
; — NCDC
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Jones et al, 2013, Fig 5

0.0001 L ——
2 10 100

Period, years

Variability of annual global mean surface temperature (1901-2010) estimated from
observations (4 datasets) and ALL and NAT forced models (CMIP3 and CMIP5)



Spectral density (°C2yr) Spectral density (°C2yr)

Spectral density (°C2 yr)

1.000

0.100

0.010

0.001

1.000

0.100

0.010

0.001

1.000

0.100

0.010

0.001

North America

10
Period (years)

Europe

100

10
Period (years)

Asia

100

T

10
Period (years)

100

Spectral density (°C2 yr) Spectral density (°C2yr)

Spectral density (°C2 yr)

1.000

0.100

0.010

0.001

1.000

0.100

0.010

0.001

1.000

0.100

0.010

0.001

South America

10
Period (years)

Africa

100

10
Period (years)

Australia

100

10
Period (years)

100

... and also on

continental
scales

5%-95% confidence rande

T[T

— Observations

— CCSM3

— ECHAM4-OPYC3

— ECHO-G
GFDL-CM2.0

— GFDL-CM2.1

— GFDL-R30
GISS-EH
GISS-ER

— INM-CM3.0

— MIROC3.2(medres)

— MRI-CGCM2.3.2
PCM
UKMO-HadCM3
UKMO-HadGEM1

IPCC WG1 AR4 Fig. 9.8



Basic procedure ....

8. Make inferences about scaling factors

« OLS expression that ignores uncertainty in 2\1 looks like...
~ S—1,8
(B—B)2z (B — B)~skpy,

— - -1__ .~
where Xp = FiZ,'F, and F = (thflx) Xz



A “typical” 1-signal detection result

Scaling factors

GS signal, EA, Annual mean, 1950-1999

H UL

No. of EOFs retained in the truncation

Detection of “GS” signal in Eurasian surface air temperature



Northern Hemisphere
1-day and 5-day
extreme precipitation,
1951-2005

Details:

Two signals (ANT, NAT)
33-dimensions (11 5-yr
averages, 3 regions)
54 ALL runs (14 GCMs)
34 NAT runs (9 GCMs)

>15000-yr of control
simulations (31 GCMs)

total of ~455 “chunks”
for estimating
covariance matrices

NAT

-3 -2

4

a. RX1day
-2 0 2
ANT

NAT

-3 -2

4

A “typical” 2-signal detection result

b: RX5day
-2 0 1 2
ANT

Zhang et al, 2013, Fig. 2



Calculating attributed change

Usual approach is to calculate trend in signal,
multiply by scaling factor, and apply scaling factor
uncertainty

Observed warming

trend and 5-95% Observed
uncertainty range GHG I
based on HadCRUT4
(black). ANT
| | OA
Attributed warming
trends with assessed 1 NAT
likely ranges (colours). —— Internal Variability
I | | I I N T N
-0.5 0.0 0.5 1.0

0
C IPCC WG1 ARS, Fig 10.5



Total least squares
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Statistical model for X,

— a single climate simulation j, j=1,...m,, for
forcing i produces

~

Xi,j — Xi + 8i,j

Simulated 110 Deterministic
ear change — forced + Internal
y J = variability
vector response
= X, =X;+§;
L. l L. 1
where Xgss = —X
EE
m;

That is, we assume that the 0 ;;’s are independent,
and that they represent repeated realizations of the
internal variability € of the observed system.



Leads to a more complicated regression model

Y = YForced | ¢

~~

X = XForced 4+ A

yForced — XForcedB

Columns of X represent ensemble averages (m, ensemble
members averaged to form column i)

Columns of A are independent of each other, and of €, with the
same covariance structure as € except scaled by 1/m;

For simplicity, scale X by M = diag(y/mq , ...,/ M)

- Columns of A have same covariance matrix as &€
- Need to remember to undo this later



Fitting the more complicated regression model

Y = YForced €

~~

X = XForced + A

yForced — XForcedB

Fitting involves finding the X*o<ed and B that minimize the “size” of
the nx(s+1) matrix of residuals [A, €]

The assumptions about the covariance structure determine how
the “size” of the matrix of residuals is measured

Note that because we scaled X, the estimate of XForced will be too
large by a factor of M, which means that we will have to adjust the
estimated Xfoced gnd B to compensate



Y = YForced €

"~

X = XForced + A

yForced — XForcedB

Find XForcedgnd B that maximize joint likelihood of &€ and
A

- minimize the “t%”_Of Reor(set) mpirix rEsitaalel /G]

nxs nx1
taking into account its covariance structure.

To take care of the covariance structure we “prewhiten” with P — 2_1/ 2

—> after prewhitening, we minimize

H [X . )’ZForced, Y — XForced’ﬁ] H:

where ||Al|7 is the squared Frobenius norm (sum of eigenvalues of ATA)



> minimize X . )’ZForced’ Y — XForced B

NN

> minimize X’ Y] . [XForced’ iForcedB\:

Note that the matrix on the left is of rank s+1
right is of rank s

Eckart-Young-Mirsky matrix approximation theorem (Huffel and
Vandewalle, 1991, pp31) states that:

the minimum loss (measured as the least squared Frobenius
norm) between a matrix and its p-lower-rank approximation is the
sum of the last p eigenvalues from the singular value
decomposition (SVD) of the original matrix.

We require an approximating matrix of only one rank lower

- minimum loss is given by the last eigenvalue v |,
in the SVD of the left hand matrix



Let [X, Y] = Udiag(vq, ..., Vs, Vi) V?

nx(s+1) (s+1)x(s+1) (s+1)x(s+1)

The minimum loss approximation is obtained when

AN

B = Vi,1 (the last singular vector of [X, Y] ) and

[iForced’ ?Forced] — Udiag(vl, Vs, O)Vt

Don't forget to rescale B and XForced yith M1



Aside — the problem of minimizing

” [X Y] . [X\Forced’ XForced’B] H ;

IS entirely parallel to the generalized linear
regression problem.

For OLS we take XForced =X

|[X, Y] — [RForeed, gForeeag] || = ||[%, Y] - [%, XB] |,

= [|v - %]

That is, we find an approximation for a vector,
rather than a matrix, but measuring distance
essentially the same way



Statistical Inferences under TLS

« Residual consistency test

— Exact distribution not available analytically because the
estimation problem is non-linear

— Approximate distribution suggested by Allen and Stott (2003) is
g2 8~(k — S)Fy—sp, = Xf_s Whenv, » k

— Ribes et al (2012a) show, using Monte Carlo simulations, that
this test operates at actual significance levels well below
specified levels for reasonable values of k, v,, v,

« Confidence intervals for scaling factors
. . /\tA— Altle—1~
— Based on approximation l/Ji; — 8[3'22 183 — Stzz 1£~SFs,v2

— Given a critical value C of K, , find B's that satisfy {5 = sC

— Nonlinearity makes intervals/regions non-symmetric, particularly
when signal is weak relative to noise



Joint 90% confidence region for ANT
and NAT detection in TNn and TXXx

TNn TXx

o~ ~ L Min et al, 2013, Fig. 9

5 0 2 4 6 -2 0 2 4 6
ANT ANT

Details: 1951-2000 TNn and TXx from HadEX (Alexander et al, 2006), decadal
time averaging, “global” spatial averaging, CMIP3 models (ANT — 8 models, 27
runs; ALL — 8 models, 26 runs; control — 10 models, 158 chunks)
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More on covariance matrix
estimation

A key source of uncertainty is the estimate of the covariance
matrix

Even with CMIP5, we often do not have enough information to
estimate 2 well

Several recent studies have attempted to avoid problems with
covariance estimation by either

— not fully optimizing (e.g., Polson et al, 2013; TLS without
prewhitening)

— Keeping dimension small (e.g., Sun et al, 2014; Najafi et al, 2014;
Zhang et al, 2013; Min et al, 2013).

Keeping dimension small
— Increases signal-to-noise ratio
— Eliminates the need for EOF truncation

— Forces explicit space- and time-filtering decisions prior to
conducting the D&A analysis

— Involves a trade off (e.g., we might lose the ability to distinguish
between different signals)



More on covariance matrix
estimation

An alternative approach is to use a more sophisticated estimator
that the sample covariance matrix

Ribes (2009, 2012a, 2012b) suggest using the regularized estimator
of Ledoit and Wolf (2004), which is given by a weighted average of
the sample covariance matrix and the identity matrix

> = AC + pl

This estimate is always well conditioned, is consistent, and has
better accuracy when sample size is small

Since this estimator is full rank, EOF truncation is not needed

Its application requires careful predetermination of the level of signal
detail we require from the observations

For example, Ribes et al (2012a) consider the effect of different
amounts of spatial filtering of surface temperature
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A further challenge - EIV

Y = Yyforced 4 ¢
X — XForced + A

yForced — XForcedB

We assumed that columns of A have the same
covariance structure as €

That is, we assumed that only internal variability
makes the signals uncertain

But model and forcing differences also make the
signals uncertain

Maybe need a more complex representation for A ?
See Huntingford et al (2006), Hannart et al (2014)



Conclusions

" -




Conclusions

 The method continues to evolve

* Thinking hard about regularization is a good
development (but perhaps not most critical)

« Some key questions
— How do we make objective prefiltering choices?

— How should we construct the "monte-carlo”
sample of realizations that is used to estimate
internal variability?

— Similar question for signal estimates

— How should we proceed as we push to answer
questions about extremes?



Thank you
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