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[1] We investigate the potential for skillfully predicting the number of daily temperature
extremes over 3 month (seasonal) periods. We use retrospective forecasts from the Met
Office seasonal forecasting system, GloSea4, nominally initialized 1 month ahead of the
target season. Initially, we define daily extremes to be events outside either the upper or
lower deciles of the daily temperature distribution from the relevant season. This definition
provides a threshold that is sufficiently “extreme” to be of interest to many users but
moderate enough to allow a sufficient sample for verification and to be of regular use to
users. We show that skill reduces slightly at more extreme thresholds. Correlations of
predicted and observed numbers of upper or lower decile extreme days over a season are
significantly greater than zero over much of the globe and, in general, are better than a
persistence forecast. Forecast skill for seasonal mean temperature is similar to, but
generally greater than, the skill of predictions of the number of extreme days. Observations
have a strong relationship between the seasonal mean and the number of extreme days.
We show that the skill in predicting the number of extreme days is largely a consequence of
this relationship and occurs primarily through a shift in the distribution of the daily data
rather than a change of its shape. The ability to predict the El Niño–Southern Oscillation and
climate change are both significant contributors to the skill in predicting temperature
extremes. In summer, significant skill also comes from initializing soil moisture.
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1. Introduction

[2] We investigate the skill of the current Met Office
seasonal prediction system, GloSea4 [Arribas et al., 2011],
in forecasting the number of extreme daily temperature
events within a target 3 month season predicted at a nominal
1 month lead. Initially, extreme warm days are defined as
all days exceeding the 90th percentile of the climatological
daily temperature distribution for the season and extreme
cold days are similarly defined as not exceeding the 10th
percentile. An investigation using similar methodology
(R. Eade et al., manuscript in preparation, 2012) has been
carried out for both temperature and precipitation extremes
over multiple seasons using the Met Office decadal predic-
tion system (DePreSys) [Smith et al., 2007].
[3] To date, there have been few attempts to predict the

number of extreme daily events on a seasonal time scale.
Indeed, there are no studies, as far as we are aware, on pre-
diction of daily temperature extremes on seasonal time-
scales, although Gershunov and Barnett [1998] looked at
how the number of daily extreme temperatures over the

United States in ECHAM3 varied with prescribed El Niño–
Southern Oscillation (ENSO) forcings. There have been
several attempts to assess the skill in forecasting precipita-
tion extremes at seasonal lead times, for example, studies by
Robertson et al. [2009] and Zeng et al. [2010].
[4] The focus of this article is on moderate extremes,

allowing robust validation of results. To give an idea of their
magnitude, in northern Europe (land points in 15°W–30°E
and 45°N–65°N), these moderate extremes relate to daytime
temperatures of approximately 26°C in summer and �9.8°C
in winter. These have been calculated as the 90th and 10th
percentiles of Tmax and Tmin, respectively, from the
observational data set used in this study (HadGHCND from
1989 to 2009) [Caesar et al., 2006]. The thresholds are of
great interest for numerous practical applications where
threshold exceedance is relevant. In many applications, the
threshold of interest will be constant throughout the season,
such as in the rail industry where each piece of equipment is
designed to withstand particular extreme temperatures
[British Standards Institute, 2001]. Often susceptibility
depends on locally relevant thresholds in a particular region,
which may be irrelevant elsewhere in the world. In human
health, for example, acclimatization means that people living
in warm climates have a higher heat-related mortality
threshold than those living in cool climates [Gosling et al.,
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2007; Curriero et al., 2002]. Adaptation in agriculture also
leads to variations in the relevant absolute temperature
threshold of interest; for example, citrus fruits are grown in
warm climate and are susceptible to frosts [Rogers and
Rohli, 1991], whereas cattle can be reared in a climate with
extremely harsh winters and can survive temperatures down
to around �35°C [Young, 1981]. To generalize our investi-
gation to a global assessment, we use a percentile approach,
whereby the extreme temperature is relevant to the clima-
tology of the region. A discussion on how skill varies with
the chosen threshold is also included.
[5] This article is structured as follows: We begin by

describing a simple method to predict extreme temperature
days using the daily raw model output from GloSea4. Our
methods have the advantage that it is not necessary to apply
a bias correction to the data. We then compare the skill of
GloSea4 in predicting the proportion of extreme temperature
days in a season with the skill of forecasting the seasonal
mean temperature. By introducing a second method for
predicting the number of extreme temperature days that
relies only on the prediction of the seasonal mean tempera-
ture, we show that predictability of the extremes is almost
entirely a result of predictability of the seasonal mean tem-
perature. We show that it is a change in the mean of the
distribution rather than in the shape that produces skill. We
also show how this predictability varies with the extremity
of the threshold considered.
[6] The ENSO phenomenon is well documented as being

associated with extreme climate events [Philander, 1990].
Therefore, we assess how much of the skill of the system in
predicting the frequency of extreme days is because of the
correct prediction of ENSO. We also assess the role played
by representation of the temperature response to climate
change and by the initialization of summer soil moisture.
[7] Finally, we consider an alternative definition of

extreme temperature where the threshold changes daily,
rather than being static throughout the season. Prediction of
this moving-threshold extreme temperature would be useful
for users whose threshold does not fit into a standard season
or whose susceptibility or coping capacity changes as their
exposure increases (as defined by Taubenböck et al. [2008]).
An example of this is in human health applications because
of acclimatization [Taylor, 2006]. The skill in predicting the
moving-threshold extreme is compared to that of predicting
the static-threshold extreme described previously.

2. Data

2.1. GloSea4

[8] Hindcasts of daily minimum and maximum near-
surface temperature (Tmin and Tmax) initialized each week
over the period 1989–2009 from the GloSea4 system
[Arribas et al., 2011] were used. For each hindcast year and
initialization week, there are three ensemble members. The
initial conditions of these three members are identical; they
are perturbed using stochastic physics [Bowler et al., 2008]
during the integration. To take some account of initial con-
dition uncertainty, a time-lagged approach was used: Data
from three hindcast start dates (nine members in total) were
combined to make predictions for each of four seasons
(December–February (DJF), March–May (MAM), June–
August (JJA), September–November (SON)). The three start

dates were consecutive weeks centered on a 1 month lead
(and so are hereafter referred to as 1 month lead forecasts).
[9] The atmosphere model used here has a horizontal

resolution of 1.25° latitude � 1.875° longitude. The initial-
ization of the hindcasts is as follows: ERA-Interim [Dee
et al., 2009] is used to initialize the atmosphere and land
surface. The ocean is initialized using a version of the Met
Office optimal interpolation scheme used for short-range
ocean forecasting [Martin et al., 2007]. For GloSea4
hindcasts initialized up to and including the year 2005,
levels of climate forcings (aerosols, methane, CO2, etc.) are
set equal to observed values. After this, they follow the
Intergovernmental Panel on Climate Change A1B scenario
[Intergovernmental Panel on Climate Change, 2001]. Ozone
is fixed to observed climatological values and includes a
seasonal cycle. We use the latest upgrade to GloSea4, using
model version HadGEM3-AO GA 2.0 (A. Arribas et al.,
manuscript in preparation, 2012). The main improvements
are explicitly initialized sea ice and improved vertical reso-
lution in the atmosphere to represent the stratosphere and in
the ocean to better represent the mixed layer and diurnal
cycle.

2.2. GloSea3

[10] The predecessor to GloSea4, GloSea3, has a larger
number of ensemble members available in its hindcasts
(15 per start date compared to a total of 9). For this reason,
GloSea3 hindcasts were used here to assess the robustness of
the results to the number of ensemble members. GloSea3
hindcasts of daily Tmin and Tmax are available initialized
on the first day of each month over the period 1987–2007.
[11] In GloSea3, initial condition uncertainty is repre-

sented using wind stress and sea surface temperature per-
turbations designed to represent observed uncertainties in
these parameters. There is no further representation of model
uncertainty. The atmospheric component of the GloSea3
system [Pope et al., 2000] has a horizontal resolution of
2.5° latitude � 3.75° longitude. The system is based on the
HadCM3 model [Gordon et al., 2000]. Unlike GloSea4,
climate forcings are constant for all hindcast years in
GloSea3.

2.3. Observations

[12] Observational data used were the daily observed
Tmin and Tmax fields from the HadGHCND data set
[Caesar et al., 2006]. This covers the period 1989–2010 on a
2.5° latitude � 3.75° longitude grid. The coverage is
incomplete both spatially and temporally, so skill assessment
has not been carried out at any grid point with more than
10% of data missing over the entire period. Moreover, at
each grid point, any season in any year with more than 10%
of the data missing is excluded from the analysis. We call the
remaining days “nonmissing.” No data is available over the
oceans, and these restrictions have resulted in no analysis
being carried out for the Southern Hemisphere.

3. Methodology

3.1. Static Threshold or Moving Threshold

[13] Two definitions of an extreme daily temperature are
used in this article. In the first definition, thresholds are
constant throughout a season, resulting in the probability of
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exceedance varying throughout the season (e.g., 90th per-
centile exceedances are less likely at the beginning of spring
than at the end). However, in total, 10% of the days in the
season exceed (do not exceed) the 90th (10th) percentile
thresholds. Days that meet this criterion are called “static-
threshold exceedances.” The threshold is calculated for
observations and hindcasts separately using all of the daily
data available over the hindcast period, 1989–2009, for the
relevant season. Separate calculation of the thresholds in the
observations and the hindcasts means that no further action
need be taken to remove model biases.
[14] We also define “moving-threshold exceedances.”

Here, each day in a season is defined to be extreme if it
exceeds the relevant percentile of its own daily temperature
distribution. This means that a priori each day during a
season has an equal chance of being extreme. For the same
percentile, the expected number of exceedances in a com-
plete season remains the same as for static-threshold
exceedances.
[15] To create these moving thresholds, the temperatures

relating to the relevant percentile are found from the daily
data for each calendar month for all years covered by the
hindcast period, separately for observations and hindcasts.
These monthly thresholds are then smoothed into daily
thresholds using a fast Fourier transform with a half-power
of 8 days (Eade et al., manuscript in preparation, 2012). This
results in daily thresholds where the daily probability of
exceedance is approximately constant throughout the year,
and the thresholds are continuous at the annual and seasonal
boundaries.

3.2. Calculating the Number of Extremes
in Observations and Hindcasts

[16] The numbers of extreme days observed during each
season of the hindcast period were counted by first calcu-
lating the relevant threshold from the observations at each
grid point. For example, the static thresholds for the SON
season were obtained at each grid point by calculating the
90th percentile of the observed distribution of daily Tmax
from all days in September, October, and November for all
years of the hindcast period. Then, for each year we calcu-
lated the proportion, P, of the observed days in the season
that exceeded this threshold. At each grid point

P¼ Number of days exceeding threshold

Number of “nonmissing” days in season
:

For static-threshold extremes, the predicted proportion of the
season that exceeds the same percentile was calculated using
one of the two methods (described in the following). Only
the first of these methods is used for moving-threshold
extremes.
[17] In Method 1, the value corresponding to the observed

percentile threshold was calculated in the hindcasts using all
daily data from the relevant season in the hindcast period.
Then for each year in the hindcast set, the proportion of the
days in the season exceeding this threshold was calculated.
[18] In method 2, the predicted proportion of the season

exceeding the hindcast threshold was inferred using the
forecasted seasonal mean temperature anomaly and the his-
toric observed relationship between the observed seasonal
mean temperature anomaly and the number of threshold

exceedances. The derivation of this relationship is described
later.
[19] For comparison, persistence predictions were made

with an equivalent lead time; that is, by persisting the
3 month period that ends before the beginning of the forecast
start date. For example, the persistence forecast for the pro-
portion of hot days in JJA was taken as equal to the pro-
portion of hot days in February, March, and April, the last
complete 3 month period before the forecast issue in May.
A persistence prediction where the proportion of days
exceeding the threshold was taken from the same season in
the previous year was also tested. The skill of this latter
persistence approach was much lower (not shown).

3.3. Skill Calculation

[20] In this article, we assess the “meteorological” skill in
forecasting the number of extreme days, rather than trying to
address the value of the forecast to users. A simple skill
measure, the Spearman’s rank correlation coefficient (here-
after, correlation) was therefore chosen. This correlation
coefficient was chosen, rather than the more well-known
Pearson’s correlation coefficient, as it is more appropriate
for count data.
[21] At each grid-square, the correlation was calculated

from the prediction fields as follows. The proportion of
threshold exceedances (or the seasonal mean temperature
anomaly) was calculated for each ensemble member for
every year in the hindcast period, and an ensemble mean was
calculated for each hindcast year. The corresponding pro-
portions of threshold exceedances (seasonal mean tempera-
ture anomaly) were then calculated in the observations.
These fields of predictions and observations were then
smoothed in space (see section 3.4). The correlation between
these two smoothed fields was then calculated at grid point
level (where each point on the 2.5° � 3.75° grid lattice
represents a region of 17.5° latitude � 18.75° longitude on
the smoothed grid). This resulted in a global field of corre-
lation for each forecast system and each type of exceedance
event (later referred to as “combination”). Unless otherwise
stated, we only consider 10th and 90th percentile extremes,
so there are 16 possible extreme combinations (10th or 90th
percentile with Tmin or Tmax for each of four seasons) and
8 possible combinations for seasonal mean temperature
(pairs of Tmin and Tmax with each of four seasons). To
summarize the information from these fields, the skill of
each method was represented as a single field of mean cor-
relation (where the mean was calculated over all combina-
tions at grid point level; later called “grid point skill”) and
the global area–weighted averages of mean correlation
(global average skill). Here, “global” refers only to grid
points with nonmissing data, thus, corresponding to the
Northern Hemisphere land. The differences between meth-
ods have been similarly represented as the differences of the
grid point skill and the differences in global average skill. A
bootstrapping technique [Wilks, 1995] has been used to
assess whether skill and differences in skill between the
methods discussed differ significantly from zero. This has
been carried out at both the grid point and global average
levels. If the correlation is greater than zero and the 90%
confidence interval of the bootstrapped correlation does not
include zero, then the correlation is judged significantly
greater than zero at the 5% level (one-tailed test). Similarly,
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if the 95% confidence interval of the differences in correla-
tion does not include zero then the absolute differences in
correlation are said to be significantly different from zero at
the 5% level (two-tailed test). The p values for one-tailed
tests have been calculated as a/2 where 100(1 � a) is the
smallest confidence interval that contains zero; similarly, for
two-tailed tests, the p value is a. The bootstrapping tech-
nique applied takes account of spatial correlations and cor-
relations between types of extremes in calculating the
significance of the global average skill. The effect on sig-
nificance levels of temporal correlation was found to be
negligible.

3.4. Smoothing

[22] To reduce noise and obtain robust results, smoothing
of the observed and hindcast fields has been carried out. The
procedure is as follows: First, if necessary, the data are
regridded to the 2.5° � 3.75° grid using bilinear interpola-
tion and masked so that missing data areas are identical in
observations and hindcasts and only include land points.
They are then smoothed using a 7 � 5 box (of size 17.5° �
18.75°); we apply the average of the 7 � 5 box to the grid
point in the center point of the box. Grid points are set to
“missing” if more than half of the data in the 7 � 5 box is
missing.

4. Results

4.1. Does the Skill of Predicting the Number of Extreme
Days Exceed That of Predicting the Seasonal Mean?

[23] First, we compare the skill of predicting the propor-
tion of extreme days in the season (Figure 1a) with skill of
predicting the seasonal mean temperature (Figure 1b).
[24] While small, the grid point skill in both the extreme

and the mean is locally, statistically, and significantly posi-
tive throughout the majority of the assessed Northern
Hemisphere (Figure 1). When averaged over all extreme
definitions, there is also significant improvement over a
persistence forecast for both the extreme and means (Table 1,
last row). However, when broken down by season, only JJA
and MAM exhibit skill significantly greater than a persis-
tence forecast for all types of extremes (Table 1).
[25] Sensitivity of the global skill in predicting the means

and in predicting the number of extreme days to the number
of ensemble members is displayed in Figure 2. In addition to
GloSea4 hindcasts, hindcasts from the GloSea3 prediction
system have been used for this purpose, as there are a greater
number of ensemble members available from this system.
The results for both GloSea3 and GloSea4 show that global
skill improves more noticeably when adding an extra
ensemble member to a small ensemble. However, the skill
appears to converge within the range of ensemble sizes
considered. Of particular interest is that for both the mean
and the extremes, the correlations are similar for an ensem-
ble size of 9 and an ensemble size of 15. This gives some
confidence that the results from the GloSea4 hindcast
ensembles (of size 9) will be applicable to operational fore-
casts of size 42. It is also worth noting that improvements in
skill have been made between GloSea3 and GloSea4.

4.2. Does the Skill in the Mean Explain the Skill
in Predicting the Number of Extreme Days?

[26] The skill of method 2 shows to what extent the sea-
sonal mean temperature can be used to predict the number of
extreme days in a season. Comparison of the skill from
method 1 with that from method 2 shows how much skill the
daily data from the model is responsible for. Various
monotonic increasing functions were considered for map-
ping the seasonal mean temperature on to the number of
exceedances. These included the following: (1) an empirical
CDF created by centralizing and combining the empirical
CDFs of each season about the all-season climatological
mean, (2) a Gaussian CDF whose parameters are estimated
from the centralized sample in item 1, (3) the empirical CDF
from item 1 is smoothed using a kernel density, and (4) a
regression technique. Because of their construction, the
correlation-based skill scores considered in this article are
robust to the choice of function. The cross-validated trials
method (denoted by item 1) had the smallest bias and root
mean square error (not shown) and so is used in the
remainder of this article.
[27] Methods 1 and 2 exhibit very similar levels of skill in

predicting the number of extremes in a season. Indeed, there
is no significant difference at the 15% level (p = 0.16)
between the global skill obtained using methods 1 and 2. By
comparing Figure 3a with 3b it can be seen that the spatial
variations in skill are similar for methods 1 and 2 (with
increased grid point skill around western Canada, southern
USA and Southeast Asia). Table 1 shows that the global skill
variations for methods 1 and 2 are similar for all combina-
tions: Pearson’s correlation coefficient between the skill
scores of the two methods is 0.93 across the 16 types of
extreme events.
[28] Analysis was also done using additional percentiles

(1st, 2.5th, 10th, 25th, 50th, 75th, 90th, 97.5th, and 99th in
total). Figure 4a shows the global average skill (averaged
over all 16 combinations) of method 1 (red) and method 2
(black) plotted against the threshold percentile. This shows
that the similarity in global skill between methods 1 and 2
holds at the full range of percentile thresholds. Note that
there is an asymmetry in the skill of both methods, with
greater skill demonstrated at the warm extremes than the
cold extremes. Asymmetry of this nature has been seen in
the simulation of extremes in global climate models, for
example, as shown by Kiktev et al. [2003, 2007].
[29] The similarity in skill of the two methods suggests

that skill in predicting the number of extreme days is very
strongly driven by the ability to predict the seasonal mean
temperature, even for very extreme thresholds. The daily
data (used in method 1) do not improve the ability to rank
the seasons successfully (or increase the skill score). This is
partly caused by the strong relationship between the number
of extremes and the mean in observations (Figure 4a, green).
This strong relationship means that a change in the shape of
the distribution of daily data over the season does not play a
large role in determining the number of extreme days and
that mean climate shifts from year to year dominate in
determining the likelihood of extreme days.
[30] Using idealized analysis, we can estimate the poten-

tial skill benefit achieved by the following: (1) a perfect
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prediction of the distribution of daily data about its mean
and (2) a perfect prediction of the seasonal mean.
[31] We investigate the two idealized predictions:
[32] 1. The “perfect daily data hindcast” is obtained by

removing the seasonal mean from the observed daily data
of each season and adding the corresponding hindcast mean
(i.e., creating an idealized forecast where the distribution of
daily data is as observed, but the skill in predicting the
seasonal mean is the same as in the model hindcast).
[33] 2. The “perfect mean hindcast” is obtained by

removing the seasonal mean from the hindcast daily data of
each season and adding the corresponding observed mean
(i.e., creating an idealized forecast where the seasonal mean

is as observed but the distribution of daily data is the same
as in the model hindcast).
[34] First, consider the perfect daily data hindcast

(Figure 4b, blue). For the extreme percentiles, there poten-
tially is an increase of approximately 0.3–0.4 in global skill
to be gained by perfectly predicting the shape of the daily
data (but not improving the skill of the mean), whereas
toward the central percentiles, the potential increase is much
lower (approximately 0.1). The extra potential predictability
in the tails is a result of errors in the mean being less
important here because of the scarcity of data at the edge of
the distribution.

Figure 1. Contours of grid point skill for GloSea4’s predictions of (a) the number of extreme days in a
season and (b) the seasonal means, both averaged over all seasons and combinations. (c) The difference
between the grid point skills shown in Figures 1a–1b. Black dots show areas with local significant differ-
ence from zero (at 5% level). Gray indicates missing data. The percentages of significant grid points are
64%, 77%, and 20%, for Figures 1a, 1b, and 1c, respectively. The global average skills are 0.20, 0.27,
and �0.07, respectively. Here all global average skills/differences are significantly different from zero
at the 1% level. For all significance tests a one-tailed test was used for Figures 1a and 1b and a two-tailed
test for Figure 1c.
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[35] Now consider the perfect mean hindcast (Figure 4b,
green). The possible gain in skill is much greater than for the
perfect daily data hindcast (around 0.5 for 10th and 90th
percentiles compared to approximately 0.3). There is less to
be gained for more extreme percentile thresholds (approxi-
mately 0.3) as the relationship between the extremes and the
mean weakens. This is as a result of noise caused by the lack
of data points in the tail of the distribution.

4.3. What Are the Physical Sources of the Prediction
Skill?

[36] ENSO and the climate change signal are well-known
sources of skill in seasonal forecast systems [Doblas-Reyes
et al., 2006; Kiladis and Diaz, 1989; Liniger et al., 2007].
To assess the extent to which these factors contribute to the
skill in extreme prediction in GloSea4, the contributions
played by the representation of ENSO and climate change
are removed from the hindcast. To do this, seasonal mean
ENSO and climate change indices were first calculated for
every member of the hindcast set. The ENSO index was
taken to be the area-weighted average of sea surface tem-
peratures (SSTs) in the Niño 3.4 region (bounded by 120°W–
170°W, 5°N–5°S). Observed changes in global SSTs were
taken to characterize the climate change index. Specifically,
the following procedure was used: First, the global seasonal
area-weighted average of SST was calculated for each
member of the hindcast. The dependence of this index on

ENSO was then removed through linear regression with the
ENSO index previously defined. The two indices are there-
fore independent by construction. An example of the ENSO
and climate change indices for DJF can be seen in Figure 5a.
These have been calculated for a single member of the
hindcast.
[37] Once the indices had been calculated for each season

and hindcast member, the linear relationship between each
of the indices and the seasonal mean temperature at each
grid point was ascertained through leave-one-out cross-
validated linear regression. This allowed seasonal mean
temperature predictions to be made at each grid point using
either one of the indices. These predictions were taken to be
the part of the hindcast seasonal mean temperature that the
forecast ENSO or climate change index is responsible for, or
in other words, the response of seasonal mean temperature at
each grid point to the ENSO or climate change index. To
remove the contribution of ENSO or climate change from
the predictions of the numbers of extremes, this response
was subtracted from the daily temperatures in the hindcast
for every day of each season. This analysis, therefore, has
similarities with the “perfect mean” analysis of section 4.2,
in that entire seasons of daily data are moved so that they
have a new mean, in this case determined by the relevant
index. The 10th and 90th temperature thresholds were
recalculated from this adjusted daily data, and the number of
extremes counted using method 1. The average skill over all
types of extreme events was then calculated as before, but
for the hindcast with the separate removal of ENSO
(Figure 5b) and the climate change response (Figure 5c).
[38] The global average skill in forecasting extremes was

reduced from 0.2 to 0.18 and 0.15, respectively. These
reductions are significant at the 5% and 1% levels, respec-
tively. The results vary widely spatially. For the removal of
ENSO, the greatest reductions in skill occur when the tele-
connections in the model world coincide with those in the

Table 1. Global Area-Weighted Average Spearman’s Correlation
for Each Combinationa

Percentileb
Method

1
Method

2
Persistence

(ST) MT
Persistence

(MT) Mean
Persistence
(Mean)

DJF
Tmin 10 0.11 0.12 0.21 0.15 0.14 0.12 0.18
Tmin 90 0.15 0.11 0.08 0.09 0.13
Tmax 10 0.13 0.13 0.18 0.14 0.12 0.19 0.16
Tmax 90 0.20 0.21 0.13 0.20 0.16

MAM
Tmin 10 0.28 0.32 0.11 0.22 0.07 0.28 0.14
Tmin 90 0.14 0.11 0.02 0.29 �0.02
Tmax 10 0.26 0.32 0.10 0.29 0.09 0.33 0.18
Tmax 90 0.24 0.24 0.07 0.34 0.09

JJA
Tmin 10 0.20 0.20 0.06 0.23 0.08 0.24 0.08
Tmin 90 0.28 0.30 0.17 0.32 0.08
Tmax 10 0.26 0.25 0.02 0.30 0.18 0.34 0.13
Tmax 90 0.30 0.33 0.21 0.33 0.15

SON
Tmin 10 0.05 0.09 0.09 0.16 0.14 0.29 0.15
Tmin 90 0.26 0.26 0.13 0.33 0.14
Tmax 10 0.08 0.13 0.11 0.30 0.12 0.39 0.21
Tmax 90 0.25 0.33 0.28 0.34 0.27
Average 0.20 0.22 0.12 0.25 0.12 0.27 0.15

aFor persistence, scores in bold font are significantly greater than zero.
Otherwise, bold indicates that the score is significantly better than the
relevant persistence forecast. Significance is assessed at the 5% level
using a bootstrapping technique. For GloSea4 forecasts, scores shown in
italic are not significantly greater than zero at the 5% level (assessed
using a bootstrapping technique). Note that all GloSea4 forecasts are
significantly greater than zero at the 10% level. DJF, December–February;
MAM, March–May; JJA, June–August; SON, September–November; ST,
static-threshold extremes; MT, moving-threshold extremes.

bThe percentile column refers only to skill in predicting extremes, not
skill in predicting the mean.

Figure 2. Global skill for different numbers of ensemble
members. Black lines show how global average skill in pre-
dicting the mean varies. Red and blue lines show how the
global skill in predicting the number of extreme events var-
ies with ensemble size, using methods 1 and 2, respectively.
The global skill is for GloSea4 (maximum 9 members,
square symbols) and GloSea3 (maximum 15 members,
crosses).
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real world, and the magnitude of the signal is not too small
in comparison to the interannual variability. Similarly with
climate change, they occur where the model response to
climate change is similar to the observed response and both
responses take a relatively large range of values. For ENSO,
this occurs in Alaska, the southern states of the United States
and Southeast Asia (Figure 5b); these are known regions
with strong ENSO teleconnections. For the removal of the
climate change response, it is northeast Canada and southern
Eurasia (Figure 5c). Note that these were areas where rela-
tively high skill was seen in the original hindcast (Figure 1).
[39] Given the importance of ENSO and climate change

signals of temperatures on the seasonal timescales, one
might expect the reduction in skill from removing ENSO
and climate change to be greater than that found previously.
However, there are several factors, which have reduced the
influence of climate change and ENSO on the hindcast skill.
First, analysis is restricted spatially and does not include

many of the areas known to be most influenced by ENSO
(such as the tropics). Second, the 21 year hindcast period is
relatively short; this means that the amplitude of the climate
change signal is small in comparison to interannual vari-
ability (in observations it typically can explain around 10%
of the variance). Finally, the indices and their teleconnec-
tions are imperfectly predicted, this reduces the amount of
variance that can be explained by the responses in the
hindcast compared with that seen in similar studies of
observations alone.
[40] In addition to the ENSO and climate change factors,

the seasonal predictability in the frequency of daily tem-
perature extremes in our model arises partly from interan-
nual fluctuations in soil moisture. Soil moisture is initialized
from ERA-Interim using anomaly initialization at the start of
each hindcast period [Arribas et al., 2011] and then evolves
through the forecast using the Joint U. K. Land Environment
Simulator interactive land surface scheme [Walters et al.,

Figure 3. Figure 3a is identical to Figure 1a; it is repeated for ease of comparison. Figure 3b is as
Figure 1b but for grid point skill in predicting extreme days using the mean only (method 2). Figure 3c
is as Figure 1c except for the difference between Figures 3a and 3b. The percentages of significant
grid points are 64%, 72%, and 6%, for Figures 3a, 3b, and 3c, respectively. The global average skills/
differences are 0.20, 0.22, and �0.01, respectively. The global average skills are significant at the 1, 1,
and 20% levels, respectively. Significance is calculated as Figure 1.
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Figure 4. (a) Global skill of method 1 (black) and method 2 (red) against the threshold chosen (in per-
centiles of 1989–2009 climatology). Also plotted is the global average correlation between observed
seasonal mean anomaly and number of static-threshold extremes (green), where the average is taken
over all eight combinations of Tmin and Tmax with the four standard seasons. (b) Red and black lines
as shown in Figure 4a. Global skill of perfect mean hindcast (green) and perfect daily data hindcast
(blue). (c) Black and green lines as shown in Figure 4a. Also plotted is the grid point skill in predic-
tions of moving-threshold extremes (dashed black) and the global average correlation between observed
seasonal mean anomaly and number of moving-threshold extremes (dashed green). All the thresholds
take the values of the 1st, 2.5th, 10th, 25th, 50th, 75th, 90th, 97.5th, and 99th percentiles.
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2011]. Previous studies show that the impact of soil moisture
anomalies on surface temperature is greatest in summer and
in continental regions where large seasonal and interannual
fluctuations in soil moisture occur [Koster and Suarez, 2003;
Seneviratne et al., 2006]. Figure 6a shows the correlation
between regional surface temperature in Tmax over summer
(JJA) and the corresponding soil moisture initialization
(May). Here, soil moisture is taken to be the total moisture
per square meter in the top four levels of the GloSea4 soil
moisture initialization (a depth of 2 m). Areas with small
interannual variation in soil moisture have been masked out,
where small is taken to be an interannual range of less than
100 kg/m2 in the soil moisture. This masking creates a
region for analysis similar to the affected regions found
in previous studies. As expected, the correlations are nega-
tive over large regions of the continents. Furthermore, sim-
ilar regional patterns emerge to those found in other studies

[e.g., Koster and Suarez, 2003]. This supports the known
mechanism: for positive soil moisture anomalies, a larger-
than-normal fraction of the solar irradiance goes into driving
evaporation of the soil moisture, and so a smaller fraction
heats the surface. Conversely, for negative soil moisture
anomalies, a greater fraction of solar irradiance goes toward
surface heating, and a smaller fraction drives evaporation.
In addition, positive soil moisture anomalies mean that
cloud and precipitation is more likely to occur than when the
soil is dry. This not only has a cooling effect, but also acts
as a positive feedback sustaining the positive soil moisture
anomaly.
[41] Figure 6b shows the difference in skill between the

original GloSea4 hindcast and an adjusted version of the
GloSea4 hindcast where the linear response to soil moisture
has been removed. Here, a method similar to that for the
removal of ENSO and climate change was used, but now the

Figure 5. (a) The time series of ENSO and climate change indices over December–February (DJF) for a
single ensemble member. Difference in skill in predicting extremes temperatures using original hindcast
and hindcast (b) with ENSO response removed and (c) with climate change response removed. Average
is over all 16 types of extreme temperature. Negative scores indicate that the removal of the signal has
degraded the forecast. Points showing significance at the 5% level are stippled (one-tailed test).
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index (soil moisture) is defined at each grid point rather than
globally. Negative (blue) regions of Figure 6b show where
the removal of the soil moisture response has decreased the
skill. Areas of negative correlation between soil moisture

and hindcast Tmax (Figure 6a, blue) mostly correspond to
areas where there is reduction in skill (Figure 6b, blue). A
notable exception is over the central Unites States. The
reason for this disparity is that, over this region, the May soil

Figure 6. (a) Average Pearson’s correlation coefficient between soil moisture initialized in May and
hindcast seasonal mean Tmax during June–August (JJA). Areas where the interannual range of soil mois-
ture is less than 100 kg/m2 are masked in gray. White crosses indicate the location of the grid points used
for Figures 6c and 6 d. (b) Average difference in skill in predicting extreme temperatures using original
hindcast and hindcast with soil moisture response removed. Average is over both the 10th and 90th per-
centiles extremes of Tmax over JJA. Significance is as shown in Figures 6b and 6c. Grid points with miss-
ing data are masked in gray. (c and d) Variation of initialized soil moisture with ensemble mean seasonal
mean Tmax over JJA for each of the 21 years in the hindcast.
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moisture used for initialization is not negatively correlated
with the observed seasonal mean Tmax over JJA (not
shown). The difference in correlation may be because the
model does not have the correct response to soil moisture
anomalies in this region (i.e., there should not be negative
correlation in Figure 6a over the central United States), but it
is also likely to be a result of well-known imperfections in
soil moisture initialization (i.e., the observed seasonal mean
Tmax over JJA do not have negative correlation with the soil
moisture initialization as the initialization is wrong). Overall,
the removal of the soil moisture response significantly (1%
level) reduces the global average skill in JJA from 0.28 to
0.26. Figures 6c and 6d quantify the relationship between
soil moisture anomalies and near-surface temperature for
key affected regions of the United States and Europe. From

Figures 6c and 6d it can be seen that a typical interannual
fluctuation of the soil moisture of around 100–200 kg/m2 in
the hindcasts can be responsible for temperature variations
on the order of 1 or 2 K. Interestingly, to an order of mag-
nitude, these numbers make quantitative physical sense
when we treat the energy required for evaporation of these
quantities of soil water as a climate forcing or as a pertur-
bation to the annual cycle of insolation. When considering
soil moisture as a climate forcing we may write

DT ¼ MLs

t
� 2K;

whereM is a typical variation of soil moisture (100 kg/m2), L
is the latent heat of evaporation of water (2� 106 J kg�1 K�1),
s is a transient climate sensitivity (�0.1) [e.g., Held et al.,

Figure 7. Same as Figure 1 except for (a) grid point skill in predicting extreme days using method 1 and
the static-threshold definition and (b) grid point skill in predicting extreme days using method 1 but con-
sidering moving-threshold extremes. The percentages of significant grid points are 64%, 77%, and 14%
for Figures 7a, 7b, and 7c, respectively. The global skills are 0.20, 0.25, and �0.05, respectively. The
global average skills/differences are all significant at the 1% level. Significance is calculated as Figure 1.
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2010, Figure 1] and t is the seasonal time scale (107 s). In
the case where soil moisture is regarded as a perturbation to
the annual cycle of insolation, we may write

DT ¼ AML

It
� 2K;

where I is the change in solar irradiance over the seasonal
cycle (�100 W/m2) and A is the amplitude of the seasonal
cycle in midlatitude continental regions (�20 K).
[42] Although these two estimates are only accurate to an

order of magnitude, they support the findings in the model of
sensitivity on the order of degrees Kelvin to typical year-to-
year fluctuations in the soil moisture at the start of summer.
This also helps to explain the finding that seasonal skill in
summer extremes is larger than that in other seasons when
soil moisture has little effect.

4.4. Sensitivity to the Use of Static or Moving
Thresholds

[43] It was seen earlier that due, in part, to the strong
correlation between the observed seasonal mean and the
observed number of threshold exceedances, predicting the
seasonal mean accurately contributes more to the skill in
the prediction of the number of extremes than predicting
the shape of the daily temperature distribution accurately.
This would imply that, assuming that seasonal mean skill
remains constant, the stronger the observed relationship
between the seasonal mean and the number of exceedances,
the greater skill the hindcast has in predicting the number of
threshold exceedances. Figure 4c shows average global
average correlation between the observed seasonal mean
temperature and the number of static-threshold exceedances
(solid green) and moving-threshold exceedances (dashed
green). The relationship is stronger at all percentile thresh-
olds for the moving-threshold exceedances than for the
static-threshold exceedances. Figure 4c also shows the skill
in predicting the number of static-threshold and moving-
threshold exceedances. The stronger relationship between
the extremes and the mean for the moving-threshold excee-
dances may have contributed to greater skill at all percentiles
for the moving-threshold extremes. This difference is sig-
nificant at the 1% level. However, Figures 7a and 7b
show that the geographical distribution of skill of moving-
threshold extremes is similar to that observed for static-
threshold extremes. This demonstrates that our conclusions
are not very sensitive to the use of static or moving thresh-
olds, implying that predictions of extremes could potentially
be made for a variety of user applications.

5. Summary and Concluding Remarks

[44] We have shown that, in general, it is possible to
forecast the number of extreme daily temperatures in a sea-
son with skill that is significantly better than persistence.
This is the first demonstration of skill at seasonal lead times
in the frequency of daily temperature extremes. The skill is
low, especially in the extra-tropics and is less than that for
forecasting the seasonal mean temperature, but globally, the
magnitudes of the mean correlation scores for forecasts of
the seasonal mean and number of extremes is similar.
[45] Skill varies considerably between seasons. When

broken down by season and type of extreme forecasts,

GloSea4 predictions are significantly better than persistence
in the Northern Hemisphere spring and summer but not in
autumn or winter. The most skillful season was shown to be
summer. Initialization of soil moisture was found to be a
contributing factor in this result. Other sources of skill were
the correct prediction of ENSO and the climate change sig-
nal. However, even when the signals from all these phe-
nomena were removed, the resulting hindcast still exhibited
significant skill so other factors are also at work.
[46] We have shown that a simple method in which the

number of extreme days is implied from the hindcast sea-
sonal mean temperature has almost identical skill to directly
analyzing the daily hindcast data. This suggests that on
seasonal timescales, skill in predicting the number of daily
extreme temperature events arises largely from the skill in
predicting the seasonal mean temperature anomaly, and little
or no additional information is achieved by considering daily
forecast data. This hypothesis is further supported by the fact
that areas with greater skill in the prediction of the mean
coincide with areas of greater skill in the prediction of the
number of extreme days. Similar results are found in other
climate modeling contexts, for example, shifts in large scale
climate modes and, hence, regionally averaged temperature
also explain shifts in regional extremes [Kenyon and Hegerl,
2008; Scaife et al., 2008].
[47] In crop modeling, where the timing and persistence of

extreme days is important, Cantelaube and Terres [2005]
found that a weather generator could be applied to the sea-
sonal mean of various variables to create daily data, which
was useful in the seasonal prediction of crop yields over
Europe. Further work might test whether the daily hindcast
data may allow skillful prediction of the timing of extreme
days during the season or the presence of consecutive
extreme days that would produce better predictions of crop
yield.
[48] The results in this article do not include the forecast-

ing of precipitation extremes on seasonal timescales, as over
regions with adequate observational data little evidence of
skill was found. Seasonal skill for precipitation extremes is
investigated by Eade et al. (manuscript in preparation, 2012).
[49] We found that, in general, prediction skill decreases

as the temperature threshold considered becomes more
extreme. However, the level of skill is remarkably constant
between 25th and 99th percentiles and only drops slightly
for predicting the 10th and 1st percentiles. Similar asym-
metry in the prediction skill of cool temperatures compared
with warm temperatures has been noted in earlier studies.
The drop in skill at outer percentiles is because of the sam-
pling noise caused by the sparseness of data in the tails.
[50] Idealized analysis showed that there is greater poten-

tial to improve skill in predictions of the number of extreme
days by improving predictions of the mean than by
improving the distribution of daily data about the seasonal
mean (except for very extreme percentiles).
[51] Finally, we considered a definition where the thresh-

old that defines “extreme” varies on a daily basis (rather than
being static over each season). We find that this increases the
correlation between the extremes and the mean in observa-
tions and therefore results in greater skill in predicting these
extremes. The final choice of methodology between static-
and moving-threshold extremes would, of course, depend on
the application.
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