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* Long term trends in extremes
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Photo: F. Zwiers (Smoke filled sunset, Aug, 2014, Winthrop, WA)




Photo: F. Zwiers (Ring-Necked Duck, Victoria)



General idea

* Postulate a set of change “signals” that might be
present in observations

* Look for those signals using a detection and attribution
formalism (basically a regression)

 Eliminate other causes

Usual assumptions

» Key external drivers of climate change are known
« Signals and noise are additive
* Model simulated signal patterns ok, magnitude less certain



Observations (HadCRUT4) Multi-model mean (ALL forcings)
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11 decades (1901-1911 to 2001-2011)
X
o -/
-Y=XpB + ¢
Evaluate = A~ Evaluate
scaling factors B 3 > residuals

After Weaver and Zwiers (2000)


http://www.nature.com/nature/journal/v407/n6804/full/407571a0.html

Temperature extremes
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http://www.wcrp-climate.org/ictp2014-about

Temperature extremes

» Studies looking at long term changes find
— More frequent and more intense warm extremes
— Less frequent and less intense cold extremes

« Changes are found to be largely due to human
influence (i.e., greenhouse gas increases)

« Supported by very high confidence in our
understanding of the change in mean temperatures

« Extremes warmed during the “global warming hiatus”
— Seneviratne et al, 2014; Sillmann et al, 2014, Johnson et al, 2015


file:////DOI/%2010.1038:NCLIMATE2145
file:////doi/10.1088:1748-9326:9:6:064023
http://adsabs.harvard.edu/abs/2015AGUFMGC44A..03J

Limitations

» Observational data
— Need long homogeneous records of daily data
— Incomplete geographical coverage
— Traceability, updatability of indices
— Order of operations

* Process understanding and representation in models,
such as
— Coupled land-atmosphere feedback processes
— Blocking

* Analysis methodology

13






Precipitation extremes

Observational studies suggest intensification is occurring

Expectation of intensification is supported by attribution of
— global warming

— atmospheric water vapour content increase

— large scale changes in mean precipitation

— ocean surface salinity changes

Only a few D&A studies to date on extreme precipitation

— detect human influence at the "global” scale

Considerable challenges remain in understanding regional
precipitation change (e.g., Sarojini et al., 2016)

Local detection of change is very hard
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https://www.nature.com/nclimate/journal/v6/n7/pdf/nclimate2976.pdf

Percentage of stations globally with statistically significant
trends in annual maximum 1-day precipitation

Based on 8376 stations with 30-years or more data in period 1900-2009
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Limitations

Data (availability, spatial coverage, record length, quality,
observational uncertainty between datasets)

Confidence in models (e.g., circulation impacts, topography,
parameterization of sub-grid scale processes)

Low signal-to-noise ratio with possibly offsetting influences
from GHGs and aerosols (may be different for means than
for extremes)

Understanding of spatial and temporal scaling (e.g., Zhang
etal., 2017)

Characterization of spatial dependence
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https://www.nature.com/ngeo/journal/v10/n4/full/ngeo2911.html
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Hydrologic extremes

Few studies linking change in mean hydrologic conditions to GHGs
— Barnett et al, 2008, Fyfe et al., 2017 (Western US)
— Najafi et al, 2016, 2017 (part of British Columbia)

Detect the effect of warming on snowpack and/or streamflow characteristics

— Also detect the effect of warming on snow cover extent
Some attempts to study changes in flood frequency

Challenges include

Data (very often inhomogenious due to river regulation)

Complex spatial variation in hydrologic sensitivity (Grieve et al, 2014; Kumar et
al, 2015) which complicates robust detection of responses (Kumar et al, 2016)

Complexity and uncertainty in the modelling chain
Confounding effects
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file:////DOI/%2010.1126:science.1152538
https://www.nature.com/articles/ncomms14996
https://agu.confex.com/agu/fm15/meetingapp.cgi/Paper/81046
http://journals.ametsoc.org/doi/pdf/10.1175/JCLI-D-16-0189.1
file:////DOI/%2010.1038:NGEO2247
http://onlinelibrary.wiley.com/doi/10.1002/2015GL066858/epdf
http://onlinelibrary.wiley.com/doi/10.1002/2016WR018607/abstract
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Storms

« Some evidence of attributable change in surface pressure
distribution (indicative of long-term circulation change)

* Few, if any, D&A studies of long-term change in position of
extratropical storm tracks, storm frequency or intensity

« Challenges include

— Data (type, source, length of record, homogeneity)

— Models (eg, broad range of frequency biases in the occurrence of
explosive cyclones in CMIP5 class models — Seiler and Zwiers,
2015a, 2015b)

— Dynamical downscaling with a regional climate model helps reduce
bias somewhat (Seiler et al, 2017)
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http://link.springer.com/article/10.1007/s00382-015-2642-x
http://link.springer.com/article/10.1007/s00382-015-2791-y
http://download.springer.com/static/pdf/705/art:10.1007/s00382-017-3634-9.pdf?originUrl=http://link.springer.com/article/10.1007/s00382-017-3634-9&token2=exp=1496180554~acl=/static/pdf/705/art:10.1007/s00382




The context ...

Policy makers and officials demand to know if climate change
was a factor in events that have just occurred

Media discourse tends to evoke links to climate change

As a default, scientists point to the similarity between recent
events and projected change

Event attribution science has been trying to find a way for
science to do better than this

Requires “rapid response” science

— e.g., see annual BAMS report on extreme events

Places high demands on process understanding, data,
models, and statistical methods
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Extreme event attribution

* The public, policy makers and officials asks:
— Did human influence on the climate system ... Cause the event?

 Most studies ask:

— Did it ... Affect its odds?
— Alter its magnitude?

« Usual approach is compare factual and “counterfactual”
climates using climate models

— Counterfactual - the world that might have been if we had not emitted
the ~2200GtCO, (and counting) that have been emitted since
preindustrial

« Shepherd (2016) defines this as “risk based”

— Contrasts it with a “storyline” based approach
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10.1007/s40641-016-0033-y
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Framing =2 How the
guestion is posed

« How is the "event” defined?

« What sources of unforced variability
are controlled?

— No sources control?
— Sea-surface temperature pattern?
— Circulation pattern?

* What question is asked about the
defined event?
— Likelihood?
— Intensity?

20 July — 20 Aug 2003 vs the same period
averaged over 2000 2004 excludm 2003

pamon ASA/W
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Figure 1, Stott et al., 2004
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http://earthobservatory.nasa.gov/IOTD/view.php?id=3714%20(image),%20Public%20Domain,%20https://commons.wikimedia.org/w/index.php?curid=450988
http://www.nature.com/nature/journal/v432/n7017/abs/nature03089.html

Rarity affects the answer

* A frequently used diagnostic is the probability (or risk) ratio

PR = 2

Po
* The probability ratio can be understood as a risk ratio if losses
incurred by the event are the same in the counterfactual and
factual climates

* PR can be used to compare historical with present climates or
present climates with either past or future climates

* The deviation of PR from 1 is larger when p, is smaller
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PR vs p, for different warming levels relative to today’s climate
(note different vertical scales)
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Rarity affects the answer

 Another metric used in event attribution is the Fraction of
Attributable Risk (or fraction of attributable probability)

P1-Po
P1

* Both metrics are sensitive to the choice of reference event (i.e.,
framing)

* Much potential to affect (and perhaps abuse) the sense of urgency
that is conveyed to “users”

A solution might be to provide PR curves (PR as a function of
rarity), on which observed events can be situated

FAR =
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Conditioning may also affect the answer

« Conditioning refers to sources of variability that are controlled by
the analyst

« Conditioning examples include

— SST anomaly pattern at the time of the event
» Allows use atmospheric models rather than coupled models

— Synoptic state at the time of the event controlling, for example, moisture
advection and convergence
 Allows use of forecast models (e.g., recent Hurricane Florence)
* Discussion about risk based versus storyline approaches reflects a
spectrum of conditioning choices (stronger conditioning =» more
“storyline” like)
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Conditioning may affect the answer

« Stronger conditioning usually implies results are less generalizable

 If C represents the conditions that are held constant, we need to
understand that the probability ratio we calculate is

E|C
PR|c _ PO b

po (E|C)

 This is because

C

37



Event Attribution Examples
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http://www.flickr.com/photos/ryan_quan/9147836698/

Calgary floods

Distribution of
annual May-June
maximum 1-day
southern-Alberta
precipitation in
CRCMS5 under
factual and counter-
factual conditions
(conditional on the
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http://download.springer.com/static/pdf/96/art:10.1007/s00382-016-3239-8.pdf?originUrl=http://link.springer.com/article/10.1007/s00382-016-3239-8&token2=exp=1476837200~acl=/static/pdf/96/art:10.1007/s00382-016-3239-8.pdf?originUrl=http://link.springer.com/article/10.1007/s00382-016-3239-8*~hmac=d7830398b9932c174860cd45d5472c8cd738ac4db8014ba476bebf2474a29dc4

Calgary floods
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http://www.macleans.ca/wp-content/uploads/2016/05/MAC21_NARRATIVE_POST10.jpg
http://www.macleans.ca/wp-content/uploads/2016/05/MAC21_NARRATIVE_1600_01.jpg
http://www.macleans.ca/wp-content/uploads/2016/05/MAY9_CAMPBELL_POST01.jpg
http://www.macleans.ca/wp-content/uploads/2016/05/MAC21_NARRATIVE_POST13.jpg

Fire risk (Kirchmeier-Young et al, 2017)

» We ask whether human induced Canacian National Fire Database

climate change has affected fire L N
risk in the"Southern Prairie”

Homogeneous Fire Regime zone f> 2
* Measure fire risk using “CWFIS” N

system indicators 6 38
— Fire Weather Index
— Fine Fuels Moisture Code ﬂ - ‘%
— Duff Moisture Code
— Drought Code

0 12 24 36 48 60
10* ha/year

 These indices depend on temperature, relative

humidity, wind speed, and precipitation Southern Prairie HFR Zone
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../../../papers/2017/kirchmeier-young-et-al-fire/1701-jan-11-submitted/mk_firewx_evatt.pdf

Fire Weather Index for Southern Prairies HFR for the

current decade (2011-2020)
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China’s Hot Summer of 2013
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How rare was JJA of 20137
°C " Sun et al, Nature Climate Change, 2014 /1-1°C

A VMM

UWV \L 1.1°C = 3.5 SD above the

-0.5 1955-1984 mean

Anomaly relative to 1955-1984
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« Estimated event frequency

* once in 270-years in control simulations

* once in 29-years in “reconstructed” observations

* once in 4.3 years relative to the climate of 2013
* Fraction of Attributable Risk in 2013: (p1 — pg)/p1= 0.984
* Prob of “sufficient causation™ PS=1-((1-p4)/(1-py)) = 0.23


http://www.nature.com/nclimate/journal/v4/n12/full/nclimate2410.html
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Evolution of JUJA mean WBGT from

observations and CMIP5
simulations
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Reconstructed observationally constrained distributions of JUA mean WBGT

A Western China B Eastern China

! !
—1961-1990 , .
2006-2015

—2011-2020
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Projected changes in distribution of JUA mean WBGT
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Conclusions




Definition of extremes

The notion of extremes is relative

While there is not a precise definition, we think of something
as being extreme when it lies beyond its “normal” range of
variation

An instantaneous value, a large spatial extent, a high
indicator of risk, an unusual seasonal mean can all be
extreme

The notion is often linked to impacts — we notice when a high
temperature, wind, precipitation amount, snow melt rate, etc.,
produce a disruptive impact
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Changes in extremes

* Increasing evidence that at least some types of extremes are
being affected by human influence on the climate system
— Temperatures
— Precipitation and perhaps flash flooding
— Storms?

* Event attribution studies are augmenting the evidence
— Deal with specific events rather than long-term tendencies
— Do not directly set events in historical or future contexts

* There is greater confidence in event attribution if it is

supported by evidence of long-term change in a related
quantity
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Event attribution

* Questions tend to focus on frequency (the probability of the
event) rather than intensity — but both are of interest, and they
are, in fact, linked

* |If we fix on a frequency, we can ask about differences in
“return levels”, whereas if we fix on a “return level” (or
observed threshold), we can ask about changes in frequency,
or “return period”.

* This choice, and other aspects of “framing”, affect the answer
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Event attribution

 Rarity affects event attribution results

— Probability ratios and fractions of attributable risk are higher for rarer
events

— Longer time scales and larger spatial scales increase the signal-to-
noise ratio, leading to events that are rarer within their distributions

— This effect is more pronounced for precipitation (since s/n ratios for
temperature are already high). See Kirchmeier-Young et al., 2019,
Earth’s Future

— Puts great responsibility on practitioners to define events
appropriately and to clearly explain the effect of the event definition
on their results
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Event attribution

« Conditioning may affect the results

— The more strongly we condition, the less we can generalize (and
therefore use the information for future planning)

— Again, practitioners have a responsibility to clearly explain limitations
— There is a parallel with medicine (e.g., epidemiology vs pathology)

S7



Event attribution

* The “reliability” of event attribution remains unknown

* We know how to assess reliabilty for probability forecasts, but
are only starting to think about this for event attribution

“Attributes diagram” for a three-category DJF Z;,, forecasting system
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Event attribution

« Communicating the results of event attribution science is a
challenge

* The public discourse is very often far ahead of the science (in
western society, every event is currently attributed to human
influence on the climate)

« Event attribution studies tend to find that humans have altered the
likelihood or intensity of the events we study, but that does not
mean that we should conclude that world would have been free of
the risk of similar events in the absence of human influence on the
climate system
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Questions?

https://www.pacificclimate.org/

Photo: F. Zwiers



