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An introduction to event attribution
Changing weather extremes

Who or what is to blame?

https://commons.wikimedia.org/wiki/File:Landscape_view_of_wildfire_near_Highway_63_in_south_Fort_McMurray.jpg
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Outline
• Long term trends in extremes 
• Event attribution
• Examples
• Calgary flood, 2013
• Fort McMurray wildfire, 2016
• China’s hot summer of 2013
• Heat stress risk in eastern and western China

• Discussion and Conclusions
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Long term trends in extremes
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Usual assumptions
• Key external drivers of climate change are known
• Signals and noise are additive
• Model simulated signal patterns ok, magnitude less certain

• Postulate a set of change “signals” that might be 
present in observations

• Look for those signals using a detection and attribution 
formalism (basically a regression)

• Eliminate other causes

General idea
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http://www.nature.com/nature/journal/v407/n6804/full/407571a0.html
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Photo: F. Zwiers (Lanzhou)

Temperature extremes

See WCRP summer school on extremes, ICTP, July, 2014

http://www.wcrp-climate.org/ictp2014-about
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Temperature extremes
• Studies looking at long term changes find 

– More frequent and more intense warm extremes 
– Less frequent and less intense cold extremes

• Changes are found to be largely due to human 
influence (i.e., greenhouse gas increases)

• Supported by very high confidence in our 
understanding of the change in mean temperatures

• Extremes warmed during the “global warming hiatus”
– Seneviratne et al, 2014; Sillmann et al, 2014, Johnson et al, 2015

file:////DOI/%2010.1038:NCLIMATE2145
file:////doi/10.1088:1748-9326:9:6:064023
http://adsabs.harvard.edu/abs/2015AGUFMGC44A..03J
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Limitations
• Observational data

– Need long homogeneous records of daily data
– Incomplete geographical coverage
– Traceability, updatability of indices 
– Order of operations

• Process understanding and representation in models, 
such as
– Coupled land-atmosphere feedback processes
– Blocking

• Analysis methodology
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Precipitation extremes
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• Observational studies suggest intensification is occurring
• Expectation of intensification is supported by attribution of 

– global warming 
– atmospheric water vapour content increase
– large scale changes in mean precipitation
– ocean surface salinity changes

• Only a few D&A studies to date on extreme precipitation 
– detect human influence at the ”global” scale

• Considerable challenges remain in understanding regional 
precipitation change (e.g., Sarojini et al., 2016)

• Local detection of change is very hard

Precipitation extremes

https://www.nature.com/nclimate/journal/v6/n7/pdf/nclimate2976.pdf
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Percentage of stations globally with statistically  significant 
trends in annual maximum 1-day precipitation

this issue in more detail by conducting a nonstationary
extreme value analysis using the global near-surface
temperature trend as the covariate. Similar to theMann–
Kendall test described above, we commence by analyzing
the set of 8326 stations with more than 30 years of data
over the period from 1900 to 2009, with the average re-
cord length being 53 years. We also analyze longer pe-
riods of record and different time windows and discuss
the results from these alternative analyses later in this
section.
We use the likelihood ratio test to evaluate the hy-

pothesis that the extremes are varying in response
to global mean near-surface temperature variations
against the null hypothesis that there is no significant
covariation. To this end, we classified stations as ‘‘sig-
nificant positive association,’’ ‘‘significant negative as-
sociation,’’ and ‘‘no significant association’’ with the
global mean near-surface temperature series. Once
again, we used a 5% significance level, which means
that under the null hypothesis, about 2.5% of stations
should show significant positive association and about
2.5% should show significant negative association by
random chance.

1) GEOGRAPHIC DISTRIBUTION OF STATIONS

EXHIBITING SIGNIFICANT TRENDS

The results of the analysis show that 10.0% of stations
globally had statistically significant positive associations
with the annual global mean near-surface temperature
series and 2.2% had significant negative associations.
The spatial locations of these stations are given in Fig. 5,
and the larger number of positive associations relative to
negative associations is clearly apparent. The uneven

geographic distribution of stations is also evident, with
locations that have long records being well represented
in North America (particularly the United States),
western Europe, and South Africa. In contrast, the
majority of the African landmass, Indonesia, parts of
South America, and the sparsely populated areas of
Australia are particularly poorly represented, either
because the records are unavailable or because they
were shorter than the 30-yr threshold used in this
analysis.

FIG. 3. Percentage of stations showing statistically significant (left) increasing and (right) decreasing trends based
on the Mann–Kendall test. The histogram represents the distribution of results from 1000 bootstrap realizations of
the global annual maximum rainfall data, and the red dot represents the value from the observed data.

FIG. 4. Percentage of sample with increasing trends based on the
Mann–Kendall test. The blue histogram was obtained from re-
sampling with 1000 replicates, and the red dot was based on the
observed sample.

3910 JOURNAL OF CL IMATE VOLUME 26
Based on 8376 stations with 30-years or more data in period 1900-2009

Westra et al 2013, Fig. 3

Increases

Observed 
(8.6%)

Expected (~2.5%)

Decreases

Observed 
(2.0%)

Expected (~2.5%)

Overall 
intensification 
based on station 
data is ~7% per 
°C of global 
warming
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Limitations
• Data (availability, spatial coverage, record length, quality, 

observational uncertainty between datasets)
• Confidence in models (e.g., circulation impacts, topography, 

parameterization of sub-grid scale processes)
• Low signal-to-noise ratio with possibly offsetting influences 

from GHGs and aerosols (may be different for means than 
for extremes) 

• Understanding of spatial and temporal scaling (e.g., Zhang 
et al., 2017)

• Characterization of spatial dependence

https://www.nature.com/ngeo/journal/v10/n4/full/ngeo2911.html


21

Terrestrial hydrological cycle

Photo: F. Zwiers (Canmore, AB)
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• Few studies linking change in mean hydrologic conditions to GHGs 
– Barnett et al, 2008, Fyfe et al., 2017 (Western US)
– Najafi et al, 2016, 2017 (part of British Columbia)
– Detect the effect of warming on snowpack and/or streamflow characteristics
– Also detect the effect of warming on snow cover extent

• Some attempts to study changes in flood frequency
• Challenges include

– Data (very often inhomogenious due to river regulation)
– Complex spatial variation in hydrologic sensitivity (Grieve et al, 2014; Kumar et 

al, 2015) which complicates robust detection of responses (Kumar et al, 2016) 
– Complexity and uncertainty in the modelling chain
– Confounding effects

Hydrologic extremes

file:////DOI/%2010.1126:science.1152538
https://www.nature.com/articles/ncomms14996
https://agu.confex.com/agu/fm15/meetingapp.cgi/Paper/81046
http://journals.ametsoc.org/doi/pdf/10.1175/JCLI-D-16-0189.1
file:////DOI/%2010.1038:NGEO2247
http://onlinelibrary.wiley.com/doi/10.1002/2015GL066858/epdf
http://onlinelibrary.wiley.com/doi/10.1002/2016WR018607/abstract
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Storms
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• Some evidence of attributable change in surface pressure 
distribution (indicative of long-term circulation change)

• Few, if any, D&A studies of long-term change in position of 
extratropical storm tracks, storm frequency or intensity

• Challenges include
– Data (type, source, length of record, homogeneity)
– Models (eg, broad range of frequency biases in the occurrence of 

explosive cyclones in CMIP5 class models – Seiler and Zwiers, 
2015a, 2015b) 

– Dynamical downscaling with a regional climate model helps reduce 
bias somewhat (Seiler et al, 2017)

Storms

http://link.springer.com/article/10.1007/s00382-015-2642-x
http://link.springer.com/article/10.1007/s00382-015-2791-y
http://download.springer.com/static/pdf/705/art:10.1007/s00382-017-3634-9.pdf?originUrl=http://link.springer.com/article/10.1007/s00382-017-3634-9&token2=exp=1496180554~acl=/static/pdf/705/art:10.1007/s00382
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Event attribution

Photo: F Zwiers
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The context …
• Policy makers and officials demand to know if climate change 

was a factor in events that have just occurred
• Media discourse tends to evoke links to climate change 
• As a default, scientists point to the similarity between recent 

events and projected change
• Event attribution science has been trying to find a way for 

science to do better than this 
• Requires “rapid response” science

– e.g., see annual BAMS report on extreme events
• Places high demands on process understanding, data, 

models, and statistical methods
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Extreme event attribution
• The public, policy makers and officials asks:

– Did human influence on the climate system … Cause the event? 

• Most studies ask: 
– Did it … Affect its odds?
– Alter its magnitude?

• Usual approach is compare factual and “counterfactual” 
climates using climate models
– Counterfactual à the world that might have been if we had not emitted 

the ~2200GtCO2 (and counting) that have been emitted since 
preindustrial

• Shepherd (2016) defines this as “risk based” 
– Contrasts it with a “storyline” based approach

10.1007/s40641-016-0033-y
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31Photo: F. Zwiers (Juan de Fuca sunset)

“Framing” affects the answer
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• How is the ”event” defined?
• What sources of unforced variability 

are controlled?
– No sources control?
– Sea-surface temperature pattern?
– Circulation pattern?

• What question is asked about the 
defined event?
– Likelihood?
– Intensity?

20 July – 20 Aug 2003 vs the same period 
averaged over 2000-2004 excluding 2003 

Courtesy Reto Stockli and Robert Simmon (NASA/Wikipedia)
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JJA temperature anomalies relative to 1961-1990

Framing à How the 
question is posed

http://earthobservatory.nasa.gov/IOTD/view.php?id=3714%20(image),%20Public%20Domain,%20https://commons.wikimedia.org/w/index.php?curid=450988
http://www.nature.com/nature/journal/v432/n7017/abs/nature03089.html
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Rarity affects the answer
• A frequently used diagnostic is the probability (or risk) ratio

!" = $%
$&

• The probability ratio can be understood as a risk ratio if losses 
incurred by the event are the same in the counterfactual and 
factual climates

• PR can be used to compare historical with present climates or 
present climates with either past or future climates

• The deviation of PR from 1 is larger when $& is smaller
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PR vs p0 for different warming levels relative to today’s climate
(note different vertical scales)

Regional risk ratios can be very different from the median risk ratio over global land areas. Table 1 sum-
marizes risk ratios for the 20- and 50-year events for regions used in the IPCC Special Report on Extremes
(Seneviratne et al., 2012; Figure 4a) at different warming levels. To illustrate the regional results that are detailed
in Table 1, we describe findings for two climatologically warm regions, East Africa and East Asia. These regions
experience changes in risk ratios that are typical for land areas when comparing 20- and 50-year events.

Considering first 20-year extreme events, the increase in global temperature from 1°C to 1.5°C results in
~280% and ~90% increases in the risk ratio (relative frequency) of present-day climate 20-year warm
extremes in the East Africa (from 1 to 3.82) and East Asia (from 1 to 1.86) regions, respectively. The additional
0.5°C global temperature increase beyond 1.5°C to 2.0°C leads to further increases in the risk ratio in the two
regions by ~540% (from 3.82 to 9.22) and ~130% (from 1.86 to 3.17), respectively. Correspondingly, the fre-
quency of 20-year cold extremes in these two regions declines by ~70% and ~50%with the increase in global
temperature from 1°C to 1.5°C and further declines by another ~25% with the additional 0.5°C global tem-
perature increase from 1.5°C to 2.0°C. The frequency of 20-year precipitation extremes in these regions
increases by about 20–25%with each 0.5°C increase in global temperature. As modeled warming in the warm
extremes is somewhat faster than observed, future increases in the frequency of current climate warm
extremes could be smaller than reported here. On the contrary, modeled warming in the cold extremes is
somewhat slower than observed; hence, future decreases in the frequency of cold extremes could be greater
than reported here.

Figure 4. (a) Map showing the “SREX” regions (Figures 1–3 in Seneviratne et al., 2012) for which statistics are computed.
(b) Risk ratios for precipitation extremes RX1day, warm extremes TXx, and cold extremes TNn over land for different
event probabilities under 0.0°C (preindustrial), 0.5°C, 1.5°C, and 2°C global warming relative to event probabilities in the
current climate (1°C global warming). The shading shows the multimodel interquartile (25%–75%) range.

10.1002/2018EF000813Earth's Future

KHARIN ET AL. 7

Kharin et al, 2018, Fig 4b
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Rarity affects the answer
• Another metric used in event attribution is the Fraction of 

Attributable Risk (or fraction of attributable probability)

!"# = %&'%(
%&

• Both metrics are sensitive to the choice of reference event (i.e., 
framing)

• Much potential to affect (and perhaps abuse) the sense of urgency 
that is conveyed to “users”

• A solution might be to provide PR curves (PR as a function of 
rarity), on which observed events can be situated
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Conditioning may also affect the answer
• Conditioning refers to sources of variability that are controlled by 

the analyst
• Conditioning examples include 

– SST anomaly pattern at the time of the event
• Allows use atmospheric models rather than coupled models

– Synoptic state at the time of the event controlling, for example, moisture 
advection and convergence

• Allows use of forecast models (e.g., recent Hurricane Florence)

• Discussion about risk based versus storyline approaches reflects a 
spectrum of conditioning choices (stronger conditioning è more 
“storyline” like)
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Conditioning may affect the answer
• Stronger conditioning usually implies results are less generalizable
• If C represents the conditions that are held constant, we need to 

understand that the probability ratio we calculate is

• This is because

!"|$ =
&'(E|$)
&+(E|$)

≠ !"

!" = -
$
!"|$.!$



38Photo: F. Zwiers

Event Attribution Examples
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Calgary flood, June, 2013 

Calgary East Village (June 25, 2013), courtesy Ryan L.C. Quan

• 100,000 displaced, 5 deaths
• Costliest (?) disaster event in Canadian history
• Estimated $5.7B USD loss ($1.65B USD insured)

http://www.flickr.com/photos/ryan_quan/9147836698/
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Calgary floods
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Figure 13. Return times of (a) average May-June evapotranspiration over the northern 

Great Plains, (b) maximum 1-day and (c) 3-day May-June precipitation over southern 

Alberta, in present-day (red) and pre-industrial ensembles (blue). Gray horizontal 

lines show (a) average evapotranspiration during the 14-21 June period, (b) average 

precipitation on 20 June and (c) average precipitation during the 19-21 June period, 

for the members of the CRCM5_Ref ensemble. Black dashed lines show (b) average 

precipitation across the region on 20 June and (c) average precipitation during the 19-

21 June period, as estimated from CaPA.  
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Distribution of 
annual May-June 
maximum 1-day 
southern-Alberta 
precipitation in 
CRCM5 under 
factual and counter-
factual conditions 
(conditional on the 
prevailing global 
pattern of SST 
anomalies)

Frequency doubles (~25-yr à ~12 yr)

Magnitude increases ~10%

Southern Alberta MJ max 1-day precip

FAR ≈ 0.5

Teufel et al (2016)

http://download.springer.com/static/pdf/96/art:10.1007/s00382-016-3239-8.pdf?originUrl=http://link.springer.com/article/10.1007/s00382-016-3239-8&token2=exp=1476837200~acl=/static/pdf/96/art:10.1007/s00382-016-3239-8.pdf?originUrl=http://link.springer.com/article/10.1007/s00382-016-3239-8*~hmac=d7830398b9932c174860cd45d5472c8cd738ac4db8014ba476bebf2474a29dc4
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Calgary floods
Distribution of 
annual May-June 
maximum 1-day Bow 
River Basin 
precipitation in 
CRCM5 under 
factual and counter-
factual conditions 
(conditional on the 
prevailing global 
pattern of SST 
anomalies)

Bow River Basin MJ max 1-day precip

Teufel et al (2016)
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Figure 14. Return times of maximum 1-day (left) and 3-day (right) May-June 

precipitation (top) and surface runoff (bottom) in present-day (red) and pre-industrial 

ensembles (blue), over the western BRB. Gray horizontal lines show the average 

precipitation (top) and average surface runoff (bottom) over this region on 20 June 

(left) and during the 19-21 June period (right) for the members of the CRCM5_Ref 

ensemble. Black dashed lines show the average precipitation over this region on 20 

June (top left) and during the 19-21 June period (top right), as estimated from CaPA. 
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http://download.springer.com/static/pdf/96/art:10.1007/s00382-016-3239-8.pdf?originUrl=http://link.springer.com/article/10.1007/s00382-016-3239-8&token2=exp=1476837200~acl=/static/pdf/96/art:10.1007/s00382-016-3239-8.pdf?originUrl=http://link.springer.com/article/10.1007/s00382-016-3239-8*~hmac=d7830398b9932c174860cd45d5472c8cd738ac4db8014ba476bebf2474a29dc4


42Edmonton Expo Centre at Northlands. Photo, Chris Bolin

Mandatory evacuation. Photo, Jason Franson/CP
Avian escape. Photo, Mark Blinch/Reuters

• 590,000 ha burnt
• 88,000 people displaced
• 2 fatalities (indirect)
• 2400 homes and 665 work 

camp units destroyed
• $3.6 B CDN insured losses

Fort McMurray Fire

Timberlea. Photo, Chris Bolin

http://www.macleans.ca/wp-content/uploads/2016/05/MAC21_NARRATIVE_POST10.jpg
http://www.macleans.ca/wp-content/uploads/2016/05/MAC21_NARRATIVE_1600_01.jpg
http://www.macleans.ca/wp-content/uploads/2016/05/MAY9_CAMPBELL_POST01.jpg
http://www.macleans.ca/wp-content/uploads/2016/05/MAC21_NARRATIVE_POST13.jpg
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Fire risk (Kirchmeier-Young et al, 2017)
• We ask whether human induced 

climate change has affected fire 
risk in the“Southern Prairie” 
Homogeneous Fire Regime zone

• Measure fire risk using “CWFIS” 
system indicators
– Fire Weather Index
– Fine Fuels Moisture Code
– Duff Moisture Code
– Drought Code

Annual area burned 1981-2010
Canadian National Fire Database

Southern Prairie HFR Zone
• These indices depend on temperature, relative 

humidity, wind speed, and precipitation

../../../papers/2017/kirchmeier-young-et-al-fire/1701-jan-11-submitted/mk_firewx_evatt.pdf
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Fire Weather Index for Southern Prairies HFR for the 
current decade (2011-2020)
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Figure S6: The probability of necessary causality (PN) for many event metrics. Values are for an event more extreme than

that indicated on the horizontal axis and the vertical bar represents the threshold for an extreme value. The uncertainty range

for each PN curve is shaded and was calculated using a bootstrapping method. The FBP metrics in panels (i) - (k) use the C2

fuel class.
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CWFIS “Extreme” FWI level = 30
Observed FWI level in Fort Mac area ≈ 40



45Photo: F. Zwiers (Yangtze River)

China’s Hot Summer of 2013

• Impacts included estimated $10B USD 
agricultural yield loss
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How rare was JJA of 2013?
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• Estimated event frequency

• once in 270-years in control simulations 

• once in 29-years in “reconstructed” observations

• once in 4.3 years relative to the climate of 2013

• Fraction of Attributable Risk in 2013: (p1 – p0)/p1≈ 0.984

• Prob of “sufficient causation”: PS=1-((1-p1)/(1-p0)) ≈ 0.23

http://www.nature.com/nclimate/journal/v4/n12/full/nclimate2410.html
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Projected 
event 
frequency

NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2410 LETTERS
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Figure 3 | Scaling factors and attributable warming. Best estimates of the
scaling factors and their 5–95% uncertainty ranges (left) and corresponding
attributable warming and their 5–95% uncertainty ranges (right) from
one-signal (ALL) and two-signal analyses (ANT and NAT) of Eastern China
5-year mean summer (June–August) temperatures for 1955–2012. In the
one-signal analysis, the observed temperature is regressed onto the
multi-model mean responses to ALL forcing. In the two-signal analyses, the
observed temperature is regressed onto the multi-model mean temperature
response to NAT and ANT (di�erence between responses to ALL and NAT
from available simulations) simultaneously. Attributable warming is
estimated as the linear least-square trends of the relevant time series
multiplied by corresponding scaling factors. OBS represents the linear
least-square estimate of the trend from the observation for 1955–2012.

temperature anomalies at or above 1.1 �C in the control simulations
and in the reconstructed observations averaged over the 59-year
period are 0.37% and 3.48%, respectively. The corresponding
90% confidence intervals are estimated to be 0.29%–0.44%
and 1.51%–6.90%, respectively (Supplementary Information). We
estimate therefore that the observed record high 2013 summer
temperature would be roughly a once-in-270-year event (90%
confidence interval 227–344 years) in the unperturbed world and
that it was a once-in-29-year event (90% confidence interval 15–66
years) averaged over the 59-year observed record for 1955–2013.
However, the background climate appropriate to 2013 is very likely
warmer than the average for 1955–2013; thus, as we discuss next,
the current expected waiting time between extreme heat events
such as that of summer 2013 is much less than 29 years. We
extend the reconstructed observations to the future by adding
observationally constrained future projections19 to pre-industrial
control simulations where the constraint is imposed by multiplying
the multi-model mean responses under the RCP4.5 and RCP8.5
emission scenarioswith the anthropogenic forcings response scaling
factor obtained from our two-signal analyses. In doing so, we
assume no changes in future interannual variability, and that the
scaling factor based on historical observations and the historical
combination of anthropogenic forcings remains appropriate for
future combinations of anthropogenic forcings, in which aerosols
are a less important factor. The result shows a very grim future
for the region in terms of the frequency of hot summers such as
that of 2013. We count the number of times temperature anomalies
exceed 1.1 �C within the 308 reconstructed observations or future
projections in individual years from 1955 to 2072 and find rapid
increases in event frequency (Fig. 4). Event frequency is about 23%
(90% confidence interval 8%–49%) for year 2013, corresponding
to an expected event recurrence time in 2013 of 4.3 years (90%
confidence interval 2.0–12.5 years), a more than 60-fold increase
from the natural state of the climate. This frequency increases to
50% by 2022 under RCP8.5 and by 2024 under RCP4.5. We also
examined the frequency for the five hottest summers occurring
in any given period of 13 or fewer consecutive years over a
59-year period in the control simulations and in the reconstructed
observations. We find that the probability of a clustering of the
five hottest years within a 13-year period or less is only 2.0% in
the control simulation, whereas it reaches 32% in the reconstructed
observations, with most of the occurrences near the end of series
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Figure 4 | Frequency of extreme hot summer recurrence. Time evolution of
the frequency of summer temperature anomalies above 1.1 �C, relative to
the 1955–1984 mean, in the reconstructed observations (1955–2013) and in
the observationally constrained projections (2014–2072) under RCP4.5
(plus) and RCP8.5 (cross) emission scenarios (left-hand scale). The solid
smooth curves are LOESS (local regression) fitting. The dashed curves
represent projected ensemble mean temperature changes under the
relevant emission scenarios (right-hand scale) and are shown here for
reference. Results for RCP4.5 and RCP8.5 are represented by red and
green, respectively.

due to the strong human-induced warming trend. This is a
16-fold increase.

Urbanization associated with rapid economic development is
known to have enhanced the Chinese temperature trend20–22. This
e�ect may have contributed approximately 0.2 �C to the summer
temperature warming in Eastern China (Supplementary Figs 7
and 8). Removing this e�ect from the observations and repeating
the above analyses reduces the best estimate of attributable warming
to anthropogenic forcing to 0.62 �C (Supplementary Fig. 9). The
combined e�ect of urbanization and anthropogenic influence to
the climate system is estimated to have a similar impact on the
recurrence of 2013-like summer heat in the past and the projected
future (Supplementary Fig. 10).

Our results indicate that the increasing frequency of extreme
summer heat in Eastern China is primarily attributable to the an-
thropogenic emission of greenhouse gases, with rapid urbanization
leading to the expansion of urban heat islands contributing as a sec-
ondary factor. Human influence has produced a very large increase
in the probability of clustering of extremely hot summers in the
twenty-first century and of long-lasting severe heatwaves such as
that of 2013. Extreme summer heat at the magnitude experienced
in 2013 is not a rare event when considered relative to the climate
appropriate to 2013; heat of this magnitude is estimated to be a
once-in-29-year event averaged over the 1955–2013 climates, with a
much lower frequency of occurrence at the beginning of the period,
rising to a once-in-4.3-year event in 2013. In contrast, such an
event is estimated to have been a once-in-270-year event under pre-
industrial conditions. Given the warming to which we are already
committed23, such summer heat is projected to become much more
frequent in the near future, regardless of future emission scenarios
even assuming, as we have done, that further urban development
will not contribute additionally to projected temperature changes
from external forcing on the climate system. It is projected that, by
2024, at least 50%of summerswill be as hot as the 2013 summer. The
increase in summer heat would inevitably lead to more widespread,
long-lasting and severe heatwaves in the region. The increase in
summer heat, combined with the region’s rising population and
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Increasing heat stress risk in China

Photo: F. Zwiers (Huangguoshu Falls)
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Figure 3: Observed and simulated 5-year running mean summer

mean WBGT. Panels show time series of regional average 5-year running

mean summer mean WBGT anomalies in (A) Western and (B) Eastern China

for observations (OBS; red line) and for CMIP5 historical simulations (ALL;

white line for multimodel ensemble mean and gray shading for 5-95% range of

ensemble means of individual models) and natural forcing simulations (NAT;

blue lines for 5-95% range of ensemble means of individual models).
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Figure 4: Climatic conditions that are increasingly conducive to

summer heat stress as measured by summer mean WBGT in China

have human-induced origins. (A) Estimates of scaling factors for 1-signal

(ALL; gray) and 2-signal (ANT and NAT; colors) fingerprint analyses. The

white lines mark the scaing factor best estimates. The width of the boxplot

represents the 25-75% uncertainty ranges of the scaling factor estimates, while

the whiskers extend to the 5-95% uncertainties ranges. (B-C) Trend

histograms of the observation-constrained 1961-2010 summer mean WBGT in

a climate with anthropogenic-only forcings (orange) and with natural-only

forcings (blue) for (B) Western and (C) Eastern China. The observed trends

are marked by vertical red lines.
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Reconstructed observationally constrained distributions of JJA mean WBGT
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Figure 5: Human influence has strongly a�ected the occurrence of

climatic conditions conducive to extreme summer heat stress by

shifting the probability distribution of summer mean WBGT to

hotter levels. Panels show the observation-constrained probability

distributions of summer mean WBGT during the 1961-1990 baseline period

(blue curves) and the recent 2006-2015 (gray curves) and 2011-2020 decades

(black curves) for (A) Western and (B) Eastern China. For each period, there

are 500 probability density curves, with one for each observation-constrained

probability distribution. Red ticks show the observed summer mean WBGT

during the three periods, while other ticks show reconstructed summer mean

WBGT based purely on observations for the three periods, as described in the

text. Vertical red lines show the record summer mean WBGT experienced

during 1961-2015.
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Figure 5: Human influence has strongly a�ected the occurrence of

climatic conditions conducive to extreme summer heat stress by

shifting the probability distribution of summer mean WBGT to

hotter levels. Panels show the observation-constrained probability

distributions of summer mean WBGT during the 1961-1990 baseline period

(blue curves) and the recent 2006-2015 (gray curves) and 2011-2020 decades

(black curves) for (A) Western and (B) Eastern China. For each period, there

are 500 probability density curves, with one for each observation-constrained

probability distribution. Red ticks show the observed summer mean WBGT

during the three periods, while other ticks show reconstructed summer mean

WBGT based purely on observations for the three periods, as described in the

text. Vertical red lines show the record summer mean WBGT experienced

during 1961-2015.
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- - - 1961-2015 maximum (1.24°C; 2012)
PR ≈ 1100 (2011-2020 vs 1961-1990)

- - - 1961-2015 maximum (0.96°C; 2013)
PR ≈ 140 (2011-2020 vs 1961-1990)
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Figure 6: Human influence is projected to continue to shift the

probability distribution of summer mean WBGT to hotter levels,

leading to more frequent hot summers that are more conducive to

extreme heat stress. Panels show (first column) the estimated risk ratios

for the record summer mean WBGT experienced during 1961-2015 in future

decades relative to the 1961-1990 baseline period, (second column) the return

periods of the record summer mean WBGT, and (third column) the

distributions of summer mean WBGT for (top row) Western and (bottom

row) Eastern China, based on observation-constrained projections under

RCP8.5 forcing scenarios. Points in the first two columns show the best

estimates, while the whiskers extend to the 5-95% uncertainty ranges of the

corresponding measures. Points in the third column show the medians of the

observation-constrained summer mean WBGT distirbutions, while the

whiskers marks the 5-95% ranges of the distributions.
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Conclusions
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Definition of extremes
• The notion of extremes is relative
• While there is not a precise definition, we think of something 

as being extreme when it lies beyond its “normal” range of 
variation

• An instantaneous value, a large spatial extent, a high 
indicator of risk, an unusual seasonal mean can all be 
extreme

• The notion is often linked to impacts – we notice when a high 
temperature, wind, precipitation amount, snow melt rate, etc., 
produce a disruptive impact
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Changes in extremes
• Increasing evidence that at least some types of extremes are 

being affected by human influence on the climate system
– Temperatures
– Precipitation and perhaps flash flooding
– Storms?

• Event attribution studies are augmenting the evidence
– Deal with specific events rather than long-term tendencies
– Do not directly set events in historical or future contexts 

• There is greater confidence in event attribution if it is 
supported by evidence of long-term change in a related 
quantity
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Event attribution
• Questions tend to focus on frequency (the probability of the 

event) rather than intensity – but both are of interest, and they 
are, in fact, linked

• If we fix on a frequency, we can ask about differences in 
“return levels”, whereas if we fix on a “return level” (or 
observed threshold), we can ask about changes in frequency, 
or “return period”.

• This choice, and other aspects of “framing”, affect the answer
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Event attribution
• Rarity affects event attribution results

– Probability ratios and fractions of attributable risk are higher for rarer 
events

– Longer time scales and larger spatial scales increase the signal-to-
noise ratio, leading to events that are rarer within their distributions

– This effect is more pronounced for precipitation (since s/n ratios for 
temperature are already high). See Kirchmeier-Young et al., 2019, 
Earth’s Future

– Puts great responsibility on practitioners to define events 
appropriately and to clearly explain the effect of the event definition 
on their results
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Event attribution
• Conditioning may affect the results 

– The more strongly we condition, the less we can generalize (and 
therefore use the information for future planning)

– Again, practitioners have a responsibility to clearly explain limitations
– There is a parallel with medicine (e.g., epidemiology vs pathology)
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Event attribution
• The “reliability” of event attribution remains unknown

• We know how to assess reliabilty for probability forecasts, but 

are only starting to think about this for event attribution

1696 VOLUME 16J O U R N A L O F C L I M A T E

FIG. 10. As in Fig. 9, except for Z500.

in all three categories and is particularly large for the
near-normal category. The improved T700 hindcasts are
more skillful than the other two unadjusted hindcasts
for all ensemble sizes. Evidence of performance differ-
ences between P̂G and P̂I is less pronounced for Z500.
The unadjusted Gaussian hindcast P̂G for Z500 marginally
outperforms the statistically improved hindcast P̂I for
ensembles larger than approximately N 5 10.

b. Probability hindcast attributes

Attributes diagrams (Hsu and Murphy 1986; Wilks
1995) are another way to represent the quality of prob-
abilistic forecasts. Essentially an attributes diagram dis-

plays the dependence of the relative frequency of an
observed event on the forecast probability. This is done
by categorizing all probability forecasts in a number of
bins and estimating the relative frequency of forecasts
and the corresponding observed event relative frequency
for each bin.
Attributes diagrams for the HFP T700 and Z500 prob-

ability hindcasts in the Tropics are shown in Figs. 9 and
10. The points on the diagrams are the area-averaged
observed event relative frequencies plotted as a function
of forecast probabilities. These points would lie on the
diagonal connecting the points (0, 0) and (1, 1) for per-
fectly reliable forecasts. The attributes diagrams provide
a geometrical interpretation of the Brier score decom-
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“Attributes diagram” for a three-category DJF Z500 forecasting system
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Event attribution
• Communicating the results of event attribution science is a 

challenge
• The public discourse is very often far ahead of the science (in 

western society, every event is currently attributed to human 
influence on the climate)

• Event attribution studies tend to find that humans have altered the 
likelihood or intensity of the events we study, but that does not 
mean that we should conclude that world would have been free of 
the risk of similar events in the absence of human influence on the 
climate system
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Questions?
https://www.pacificclimate.org/


