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 Detection – the challenge due to internal variability

 The challenge of model evaluation

 Irreducible uncertainties in near-term projections

 Long-term projections

Outline



The challenge of detecting trends



Locally internal variability is very large 
Daily precipitation in pre-industrial control run 

Disaster gaps consistent with Pfister et al. 2009 



Variability can bring lots of suprises
Quiescent and clustering century in control simulation



Variability is huge: observational 
record is often much too short to 
inform reliable risk assessments
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Precipitation example: change or no change?
1-day precipitation maxima 1901-2017 (Zurich)



The butterfly effect
Annual 1-day rainfall maxima (rx1day) N Europe
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The butterfly effect
Two realizations of exact same model
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Forced response
The underlying signal that determines return period

Forced response
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Forced response determines long-term change

Forced response
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Erring on the side of least drama?
1-day precipitation maxima 1901-2017 (Zurich)



The score 31:0

Scherrer et al. (2016), J Geophys Res.

Trends in 1-day precipitation maxima 1901-2014
Insignificant Significant



More increase than decrease in heavy precip

Update of  Westra et al. 2013

significantly negative relationship with global mean temperature

significantly positive relationship with global mean temperature

non-significant relationship with global mean temperature



More than expected by chance
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Local noise to large-scale confidence: 
Changes detectable 

at aggregated scales
Europe: Fischer and Knutti (2016), Nature CC, Zeder and Fischer, in prep.

Global: Westra et al. (2013)  J Climate; Fischer and Knutti (2014) GRL



Observed trend in hot extremes

Lorenz, Stahlhandske and Fischer, 2019, GRL



The prime example of an extreme

Schär et al. 2004, Nature

Average summer temperature at 4 Swiss stations
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Detection of changes in hot extremes 
1864-1989 vs. 1990-2018
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Schär et al. 2004, Nature



Daytime vs. nighttime

Chen and Zhai (2018) GRL



Record-breaking extremes



Return period reduction occurred unnoticed



We would expect them to become rarer…

… but some don’t

Meehl et al. 2009

Record-breaking events



Meehl et al. 2009

More hot – less cold extremes



The challenge of model evaluation



Europe one of the
few regions with

significant positive 
trends

Observed trends in hot extremes

[°C]

Donat et al. 2013, JGR

Trend in temp. on 
hottest day per 

year (1951-2010)



Observed trends in hot extremes

Fischer and Knutti (2014), Geophys. Res. Letters

Trends in TXx 1979-2010 (GHCNDEX)



Poor agreement

Fischer and Knutti (2014), Geophys. Res. Letters

Trends in TXx 1979-2010 (CESM)



Good agreement

Fischer and Knutti (2014), Geophys. Res. Letters

Trends in TXx 1979-2010 (CESM)



Observed changes in hot extremes
Trends in TXx 1979-2010 (CESM)



Observed changes in hot extremes
Trends in TXx 1979-2010 (CESM)



Observed changes in hot extremes
Trends in TXx 1979-2010 (CESM)



Model overestimate trends in hot extremes

Overestimation results from 
too small fraction with 

negative trends

Fischer and Knutti (2014), Geophys. Res. Letters



Model evaluation is challenging
due to internal variability



An uncertain future



Uncertainties in cold extremes are very large

CMIP5 low
estimate

CMIP5 high 
estimate

Fischer et al., 2013, Nature CC

20-yr mean of
annual
temperature
minima TNn
2041-60 wrt 
1986-2005
(RCP8.5)

Model 

uncertainties too 

large to make 

statement about 

changes in 

temperature

extremes?



What if we had the perfect model?



Largely due to internal variability

CESM-IC low
estimate

CESM-IC high 
estimate

Cold extremes 
(TNn) 2041-60 
wrt 1986-2005
(RCP8.5)

Fischer et al., 2013, Nature CC



Initial condition ensemble setup

Experimental setup CESM-IC
Fully-coupled Earth System Model 

CESM (CAM4) 1950-2100

Historical forcing and RCP8.5

Reference simulation

Fischer et al., 2013, Nature CC



Atmospheric perturbation

Reference simulation
21 pert. members

Fischer et al., 2013, Nature CC

Experimental setup CESM-IC
Fully-coupled Earth System Model 

CESM (CAM4) 1950-2100

Historical forcing and RCP8.5

similar to Deser et al. (2012)



Some terminology

Reference simulation
Uncertainty range due 
to internal variability
Forced signal

This uncertainty is 

quasi-irreducible



Large internal variability at regional scale

Reference simulation
Uncertainty range due 
to internal variability
Forced signal

Coldest nights (TNn) averaged over Northern Europe



Largely due to internal variability

CESM-IC low
estimate

CESM-IC high 
estimate

Cold extremes 
(TNn) 2041-60 
wrt 1986-2005
(RCP8.5)

Fischer et al., 2013, Nature CC



Major uncertainties in multi-decadal
regional projections are

quasi-irreducible



No clue where we are going?

Low 
estimate



Internal variability affects location of changes

Atmospheric internal 
variability primarily 

affects the location of 
the greatest changes

Member 1

Member 2



A simple spatial perspective

Fischer et al., 2013, Nature CC



Members agree on spatial PDF

wrt 1986–2005 

Fischer et al., 2013, Nature CC



Hot extremes emerge within decades

wrt 1986–2005 

Fischer et al., 2013, Nature CC



Major changes in hot extremes in all models

wrt 1986–2005 

Fischer et al., 2013, Nature CC



Good agreement on changes at 2°C warming

Fischer et al., 2013, Nature CC

Multi-model mean is 
often misleading



Models agree that temperature extremes 
change already within next decades



Robust forced response



Poor agreement on heavy precip signal

Annual precipitation maxima
change (Rx1day) in 20th century
Pattern correlation: r=0.04 



Large differences even in running means

20-yr running means of annual
precipitation maxima (N Europe)



Two example model runs

2 distinct model simulations

CESM1 (CAM4)
CSIRO-Mk3-6-0



Scaling with global mean temperature

CESM1 (CAM4)
CSIRO-Mk3-6-0

Uncertainty partly due 
to mean warming



Scaling with global mean temperature

CESM1 (CAM4)
CSIRO-Mk3-6-0



High agreement in forced signal

CESM1 (CAM4): 3.4%/°C
CSIRO-Mk3-6-0: 3.8%/°C



Poor agreement in observational period

Pattern correlation: r=0.04 
Fischer et al., 2014, GRL



High agreement in forced signal

Pattern correlation: r=0.59
Across CMIP5 models: r=0.51 

The forced response 
determines changes in 

return periods

Fischer et al., 2014, GRL
see also Zhang et al. 2013, GRL



Heavy precip more robust than mean precip

Stippled if 80% of CMIP5 
models agree on sign of
forced response

Fischer et al., 2014, GRL
see also Zhang et al. 2013, GRL

Change in heavy 
precipitation

Change in annual mean
precipitation

Stippled area fraction: 73% Stippled area fraction: 27% 



Forced response is often more robust 
than widely recognized



Conclusions

 Changes in extremes are detectable at regional, to 
continental and global scale

 Internal variability is large – local uncertainties are 
often irreducible
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