Which scenario do we pick?

Business as usual Strong mitigation




Which scenario do we pick?
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Projections: what if...
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Net CO, emissions (GtC / year)
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Mitigation scenario is very ambitious
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Net CO, emissions (GtC / year)
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...1.5°C target is extremely ambitious
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T, relative to 1861-1880 (°C)

Scaling is mostly quite linear
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Intensity hotspot in mid-latitudes
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Fischer 2014, Nature Geoscience
see also Fischer and Schar (2010) Nature Geoscience
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Role of variability changes

Present-day
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Probability ratio

Twice as many warm
extremes at 2°C than
1.5°C warming

Hot extremes
Exceedance 99.9th perc.
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Global mean warming [°C]
Fischer and Knutti 2015, Nature CC



Role of variability changes

Present-day
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Frequency vs. intensity

(a) Intensity change

2xCO2 vs. 1xCO2 [°C]
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Changes in drivers?




Warming explains most changes in hot days

Change in number of hot days at 2°C global warming

Simulated 2°C warming

Global mean
ratio 7.1

Probability
Estimated 2°C shift - 25 ratio
Global mean o
ratio 7.5
115
1
— 0.8

Fischer and Knutti, 2015, Nature CC
Consistent with Cattiaux et al. (2016), Fischer and Schar (2010), Schaller et al. (2018)
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Evidence linking Arctic amplification to extreme weather

in mid-latitudes

Jennifer A. Francis' and Stephen J. Vavrus®

Received 17 January 2012: revised 20 February 2012; accepted 21 February 2012: published 17 March 2012.

[1] Arctic amplification (AA) — the observed enhanced
warming in high northern latitudes relative to the northern
hemisphere — is evident in lower-tropospheric temperatures
and in 1000-to-500 hPa thicknesses. Daily fields of 500 hPa
heights from the National Centers for Environmental Pre-
diction Reanalysis are analyzed over N. America and the
N. Atlantic to assess changes in north-south (Rossby) wave
characteristics associated with AA and the relaxation of pole-
ward thickness gradients. Two effects are identified that
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In recent years, the Northern Hemisphere has suffered several dev-
astating regional summer weather extremes, such as the European

[3] Exploration of the atmospheric response to Arctic
change has been an active area of research during the past
decade. Both observational and modeling studies have
identified a variety of large-scale changes in the atmospheric
circulation associated with sea-ice loss and earlier snow
melt, which in turn affect precipitation, seasonal tempera-
tures, storm tracks, and surface winds in mid-latitudes [e.g.,
Budikova, 2009; Honda et al., 2009; Francis et al., 2009;
Overland and Wang, 2010; Petoukhov and Semenov, 2010;
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Revisiting the evidence linking Arctic amplification to extreme

weather in midlatitudes
Elizabeth A. Barnes'

Received 17 July 2013; revised 8 August 2013; accepted 14 August 2013; published 4 September 2013.

[1] Previous studies have suggested that Arctic ampli-
fication has caused planetary-scale waves to elongate
meridionally and slow down, resulting in more frequent
blocking patterns and extreme weather. Here trends in the
meridional extent of atmospheric waves over North America
and the North Atlantic are investigated in three reanaly-
ses, and it is demonstrated that previously reported posi-

hereafter) suggest that atmospheric Rossby waves have elon-
gated meridionally in recent decades due to Arctic amplifica-
tion. They hypothesize that these elongated waves propagate
more slowly and favor more extreme weather conditions.
They speculate that as the earth continues to warm, Arctic
amplification will increasingly influence the North Atlantic
atmospheric circulation, potentially causing more extreme

and Winter Weather

Generally the large-scale midlatitude atmospheric circulation is

OF THE POLAR VORTEX SAGGED SOUTHWARD OVER THE CENTRAL
ates. All-time low temperature records for the calendar date were set
hicago [-16°F (-27°C), 6 January], at Central Park in New York [4°F
land at many other stations (/). Since that event, several substantial snow
the East Coast. Some have been touting such stretches of extreme cold
warming is a hoax, while others have been citing them as evidence that
global warming is causing a “global weirding” of the weather. In our view, it is neither.

temperate latitudes. It’s an interesting idea,
but alternative observational analyses and
simulations with climate models have not
confirmed the hypothesis, and we do not
view the theoretical arguments underlying it
as compelling [see (3—0)].

Other studies have suggested that the loss
of Arctic sea ice may influence the atmo-
spheric circulation in mid-latitudes dur-
ing summer [e.g., (7)]. Sea-ice losses dur-

news & views

Heated debate on cold weather

Erich M. Fischer and Reto Knutti
Arctic warming has reduced cold-season temperature variability in the northern mid- to high-latitudes. Thus, the
coldest autumn and winter days have warmed more than the warmest days, contrary to recent speculations.
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Summer weather becomes more persistent
ina 2°C world
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Area-weighted average blocked days
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Area-weighted average blocked days
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No robust change in dynamical drivers
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Changing role of land-atmosphere interactions

Increasing
temperature variance SCEN = SCEN,ncoupied

Changing role of
land surface

(SCEN - SCEN
(CTL-CTL

uncoupled) -

uncoupled

Standard deviation of T, , (

Seneviratne et al. (2006), Nature



Conclusions

= Thermodynamic changes in temperature dominate
projected temperature changes

= Changes in atmospheric dynamics remain a major
uncertainty

= Changing land-atmosphere interactions may act as an
amplification factor



Heat stress, urban heat island,
marine heatwaves

Erich Fischer

Institute for Atmospheric and Climate Science
ETH Zurich

ETH-urich erich.fischer@env.ethz.ch



Heat stress




Human thermal regulation

Heat stress changes relevant not only for
mortality but human discomfort and work

inefficiency
RADIATION.
005 ~100W of metabolic heat transported
away through heat conduction,
EVAPORATION evaporative cooling, and net infrared
t radiative cooling (Sherwood and Huber
2010)
RADIATION
g High ambient temperature and humidity
reduces heat loss
CONVECTION

Fiala et al. (1999)



US Heat index: Temperature and humidity
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Heat stress: function of temperature and humidity
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Heat stress in Southern Australia

CMIP5 models (1% hottest days 1986-2005)

@ e® U OE @ @

| | | | |
28 30 32 34 36

Temperature [°C]

" NOJO X @

| | | | |
10 20 30 40 50

Relative humidity [%]

Major model spread and
biases in T and RH

Fischer and Knutti, 2013, Nature CC



Heat stress in Southern Australia

Model biases in combined indicator are
substantially smaller than anticipated
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The hotter, the drier the air

AT vs. ARH (1% hottest days)
2081-2100 wrt 1986-2005
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The hotter, the drier the air

Western North America
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Relative humidity (%)

Consistent with first principles

Southern Australia Central North America
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Fischer and Knutti, 2013, Nature CC



Projections of heat stress may be
more robust than for temperature
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Outdoor labor productive seriously declines

Labour capacity (annual min/max month; %)
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An adaptability limit to climate change
due to heat stress

Steven C. Sherwood*' and Matthew Huber®

2Climate Change Research Centre, University of New South Wales, Sydney, New South Wales 2052, Australia; and °Purdue Climate Change Research
Center, Purdue University, West Lafayette, IN 47907

« [ "= At 35°C and 100% relative
RADIATION t NN, humidity (Wet Bulb
I0E) - >\°'; Temperature WBT = 35°C) the
EVAPORATION 3 z human body cannot loose heat
14 . through convection or
evaporation (Sherwood and

'ﬁ’ﬁcﬁg\’ﬁ a " ]/T;[ l Huber 2010)

CONVECTION




Deadly heat stress around Persian Gulf?

DOM = 28.3 & - DOM = 29.8
LND = 277 y LND = 291
AP = 28.0 A AP =293
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°C

Pal and Eltahir, Nature Climate Change (2016)
Im et al. (2017) Science Advances
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Bandar Mahshahr, Iran, July 2015
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Schar, Nature Climate Change (2016)




Bandar Mahshahr, Iran, July 2015
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Heat stress may be reaching levels
near the adaptation limit —
excess mortality starts already at
much lower levels



Hotspots along densely populated coasts
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Urbanized areas most affected
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Urban heat island effect
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Urban heat island — simulated

Air Temperature Net Radiation

Higher or lower depending
on rural albedo

Maximum heat
island at night

before sunrise

Strongly reduce
latent heat flux from

. sealed urban surface
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0 model. Int. J. Climatol., 31: 1848—1865.

Figure 4. Annual climatolo H |gh heat re I ease and grid cell average (shown only for air temperature for clarity) air
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Urban heat island over N Europe (JJA mean)

Microscale
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Insulated surfaces Anth ' _—
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Absorption of solar ~ Limited sky view, traps Impermeable surfaces and reduced Increased heat storage from
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reflectance materials buildings runoff and reduce evaporation and increased surface area

Kershaw, 2017; doi:10.1088/978-0-7503-1197-7ch4



Factors contributing to urban heat island

Increased heat storage/release due to higher
thermal admittance (ground heat flux)

Longwave trapping due to reduced sky view factor
Albedo contrast due to low reflectance material

More impermeable and less green surfaces
-> reduced latent heat flux

Anthropogenic waste heat



Heat stress nights increase more over cities

N Europe S Europe
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Urban heat island effect can
substantially amplity
nighttime extremes




Marine heatwaves
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Mass coral bleaching, fish mortality,
toxic algae




Recent occurrence of marine heatwaves

O(also in 1998 and 2002)
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Froelicher and Laufkoetter (2018), Nature Comm.



Marine heatwaves have doubled
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Marine heatwaves follow the mean warming
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Detection: Trend exceeds internal variability
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Detection: Trend exceeds internal variability
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Changes in marine heatwave follow mean

CMIP5 mean change in marine heatwave probability

a Probability ratio at 1 °C warming b Probability ratio at 2 °C warming

Estimated probability ratio (preindustrial
c Probability ratio at 3.5 °C warming d control + local annual warming consistent with 3.5 °C warming)
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Froelicher, Fischer and Gruber (2018) Nature



Marine heatwaves
rapidly increase with warming



Conclusions

Heat stress is a multivariate problem

Urban heat island can substantially amplify nighttime

temperatures

Marine heatwaves increase faster despite less

warming over ocean than land
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