Climate extremes Motivation and guiding questions

Erich Fischer Institute for Atmospheric and Climate Science ETH Zurich erich.fischer@env.ethz.ch

How can we **define** and **quantify** climate extremes?

Why care? Haven't these events occurred before?

Basel, September 1852 Flooding

F.

Hanna and a state

INTERNAL DATA

Estimated historical droughts in China

Dai et al. (2012)

Detection

Have extremes changed more than expected by chance?

Climate change or not?

The 2013 value is -0.01 cm/month

June through October averages over 20–10N, 20W–10E. 1950–2013 climatology. NOAA NCDC Global Historical Climatology Network data

Davis and Caldeira (2010)

Climate change or not?

The 2013 value is -0.01 cm/month

June through October averages over 20–10N, 20W–10E. 1950–2013 climatology. NOAA NCDC Global Historical Climatology Network data

Davis and Caldeira (2010)

Has there been an increase in extremes?

Swiss Re (2013)

Attribution

Why have they changed?

Today's occurrence

What is probability of extremes today and in the near future?

Future climate

How are extremes changing in the future? And **why**?

The risk perspective How do we get from the hazard to the risk?

Risk is more than hazard probability

Heatwaves Definition, metrics and drivers

Erich Fischer Institute for Atmospheric and Climate Science ETH Zurich erich.fischer@env.ethz.ch

Outline

- Definition of temperature extremes
- Metrics of heatwaves
- Physical drivers of heatwaves

Definition and metrics

The prime example of an extreme Average summer temperature at 4 Swiss stations

JJA Temperatures 1864-2018

Schär et al. 2004, Nature

Schematic changes in temperature extremes

IPCC SREX (2012)

Changes beyond the mean

CH2018 Swiss National Climate Scenarios (2018)

Heatwave metrics

Barriopedro et al. 2011, Science

Fixed threshold indices – powerful communication

Fixed thresholds – challenging for large regions

Fixed threshold indices

Pros:

Accessible and easy to interpret Potentially impact-relevant

Cons:

Difficult to map across different climate zones

Zero days in one regions (e.g. mountains or polar regions) all days in others (e.g. tropics)

Ignores different adaptation level in cold and warm climates

Change depends on base state

Bias-adjustment needed (sensitive to small biases in mean state)

Warm spell duration index

WSDI Warm spell duration indicator

Annual count when at least six consecutive days of max temperature > 90th percentile

days

Zhang et al. (2011), WIRE

Warm spell duration index

Limitations of WSDI

WSDI only quantifies duration but not magnitude of exceedance

Russo et al. (2015) ERL

No universal heatwave definition

Fischer and Schär (2010), Nature Geoscience; Perkins and Alexander (2013), J Climate

Number of heatwaves

Fischer and Schär (2010), Nature Geoscience; Perkins and Alexander (2013), J Climate

Heatwave-day frequency

Fischer and Schär (2010), Nature Geoscience; Perkins and Alexander (2013), J Climate

Intensity/magnitude/amplitude of heatwave

Fischer and Schär (2010), Nature Geoscience; Perkins and Alexander (2013), J Climate

Percentile-based thresholds

Pros:

Easy to compare different models, reanalyses and observations

Applicable at global scale

Simple way of accounting for adaptation to local climate

Change is independent of base state

Cons:

Difficult interpret and associate with personal experience

Depends on definition of percentile (time-invariant or seasonally-varying)

Larger or smaller? A question of definition

HW intensity 2010

HW intensity 2003

Barriopedro et al. 2011, Science

Spatial extent of record-breaking area

Barriopedro et al. 2011, Science

Indices matter: Frequency vs. intensity

Fischer et al. 2012, GRL
Changes depend on quantile

Zhang et al. 2011 Peterson et al. 2008

The more extreme the higher the change

The quest for universal indices

Environmental Research Letters

LETTER

Top ten European heatwaves since 1950 and their occurrence in the coming decades **b** July 2015

Simone Russo^{1,2}, Jana Sillmann³ and Erich M Fischer⁴

¹ European Commission, Joint Research Centre, Ispra, Italy

² Institute for Environmental Protection and Research (ISPRA). Rome. Italy

$$M_d(T_d) = \begin{cases} \frac{T_d - T_{30y25p}}{T_{30y75p} - T_{30y25p}} & \text{if } T_d > T_{30y25p} \\ 0 & \text{if } T_d \leqslant T_{30y25p} \end{cases}$$

Russo et al. (2015) ERL

Recommendations

- There are tradeoffs between simplicity and comprehensiveness
- Universal indices may help to identify hotspots
- Understanding the changes requires breaking down in different characteristics
- Impact studies require indices tailored to the problem

Remember that your finding may depend on the index

Physical drivers of heatwaves

Anticyclonic anomaly

2003

Barriopedro et al. 2011, Science

Same drivers in Central-Eastern China heatwaves

Anticyclones favor cloud-free conditions, lack of precipitation and subsidence -> adiabatic heating

Freychet et al. 2017, ERL

Same drivers in Central-Eastern China heatwaves

Anticyclones favor cloud-free conditions, lack of precipitation and subsidence -> adiabatic heating

Freychet et al. 2017, ERL

The Lagrangian perspective

Source of air masses may be remote and at higher levels (high potential temperature)

World Weather Attribution (2019)

The role of adiabatic heating

Atmospheric circulation anomaly 2003

Dry spring 2003

Precip anomaly FMAM 2003

Pre-conditioning through:

- Low spring precipitation
- Early vegetation onset -> transpiration
- Low cloudiness

Dry spring 2003

 $R_{net} = SW + LW = H + \lambda E + G$

What is the effect of the anomalous conditions?

Amplification through land-atmosphere interactions

Soil drying substantially enhanced the number of hot days

Fischer et al. 2007c, GRL

The drier the soils – the more hot days

Hirschi et al. 2010, Nature Geoscience

The drier the soils – the more hot days

Mueller and Seneviratne 2012, PNAS

Dry spring – necessary but not sufficient

Quesada et al. 2012, Nature CC

The role of vegetation

Zaitchick et al. 2006, Int. J. Climatol.

Dynamic vegetation vs. static vegetation

Stefanon et al. (2012) J Geophys Res Atmos

The built-up of a heatwave

Miralles et al. 2014, Nature Geoscience

Time

Case study: Black Saturday February 2009

Australia heatwaves – surge through advection

Temperature charts for Melbourne, Australia, 22 January to 10 February 2006. From 1885 to 2006, the mean maximum and minimum temperatures for this time of year were 26C and 14C respectively (79F & 57F) (www.earthsci.unimelb.edu.au/~awatkins/melbmeantemp.html). The 7 Feb peak of 46.4C (115.5F) with 5% relative humidity was the hottest in 150 years of records for any Australian capital city. Graphs by Andrew Watkins: www.earthsci.unimelb.edu.au/~awatkins/melbtemp.html With Andrew's permission, © public domain by Robin Whittle 2009-02-11.

Synoptic situation – Black Friday February 2009

National Meteorological Oceanographic Centre MSL Analysis (hPa) Valid: 00 UTC Sat, 7 February 2009 (11:00 am EDT Sat 7 February 2009)

The desert wind

Conclusions

- Anticyclones are key drivers of heatwaves

 > advection from subtropics, subsidence
 (adiabatic heating), cloud-free conditions
 (radiative heating)
- Land-atmosphere interactions and preconditioning are important amplifiers
- Build-up of heat in PBL or advection determine time scales of heatwave build-up