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How can we define and quantify
climate extremes?



Why care?
Haven’t these events occurred before?
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Estimated historical droughts in China
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Detection

Have extremes changed more than
expected by chance?



Climate change or not?

Sahel precipitation anomalies 1950-2013
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Climate change or not?
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Has there been an increase in extremes?
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Attribution
Why have they changed?



Today’s occurrence

What is probability of extremes today
and in the near future?



Future climate

How are extremes changing in the
future? And why?




The risk perspective

How do we get from the hazard to the
risk?
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Outline

= Definition of temperature extremes
= Metrics of heatwaves

" Physical drivers of heatwaves



Definition and metrics
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The prime example of an extreme

Average summer temperature at 4 Swiss stations
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Probability of Occurrence

Schematic changes in temperature extremes
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Changes beyond the mean

(b) Cumulative distribution
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Heatwave metrics
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Fixed threshold indices — powerful communication
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Fixed thresholds — challenging for large regions

Tmin > 20°C Tmax > 35°C
1951-2008
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Perkins and Alexander 2013, J Climate



Pros:
Accessible and easy to interpret

Potentially impact-relevant

Fixed threshold indices

Cons:

Difficult to map across different
climate zones

Zero days in one regions (e.g.
mountains or polar regions) all
days in others (e.g. tropics)

lgnores different adaptation
level in cold and warm climates

Change depends on base state

Bias-adjustment needed
(sensitive to small biases in
mean state)



Warm spell duration index

WSDI Warm spell duration indicator

Annual count when at least six consecutive days of max days
temperature > 90th percentile

Zhang et al. (2011), WIRE
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Warm spell duration index
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Limitations of WSDI

WSDI only quantifies duration but not

magnitude of exceedance
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No universal heatwave definition

Heat wave
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Number of heatwaves

number
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Max temperature [C]
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Heatwave-day frequency

frequency
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Max temperature [C]

Intensity/magnitude/amplitude of heatwave

© = 2003 temperatures
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Percentile-based thresholds

Pros: Cons:
Easy to compare different Difficult interpret and associate
models, reanalyses and with personal experience

observations Depends on definition of

Applicable at global scale percentile (time-invariant or

Simple way of accounting for seasonally-varying)

adaptation to local climate

Change is independent of base
state



Larger or smaller? A question of definition

HW intensity 2003 HW intensity 2010

Barriopedro et al. 2011, Science
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Indices matter: Frequency vs. intensity

(a) Intensity change
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Changes depend on quantile

20 - n — 20
o
(@)
~
w
Qo
S 15} 15
[4b)
5 ra
> i W i
=
2
o 10 10
w
=
(4Y)
©
ks
€ 5 / *[_\ =5
8 /
O A Y
0 1 ] ) ] 1 | 1 ] 1 | 0
1950 1960 1970 1980 1990 2000

The more extreme

: Zhang et al. 2011
the hlgher the change Peterson et al. 2008




The quest for universal indices

Environmental Research Letters
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Recommendations

There are tradeoffs between simplicity and
comprehensiveness

Universal indices may help to identify hotspots

Understanding the changes requires breaking
down in different characteristics

Impact studies require indices tailored to the
problem



Remember that your finding may
depend on the index



Physical drivers of heatwaves




Anticyclonic anomaly
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Same drivers in Central-Eastern China heatwaves

Z500 (colors) and U200 (black
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Same drivers in Central-Eastern China heatwaves
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Source of air masses may
be remote and at higher

levels (high potential
temperature)

Source » at 4900N 200E

Meters AGL

The Lagrangian perspective
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The role of adiabatic heating
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Atmospheric circulation anomaly 2003

500hPa anomaly Summer temperature anomaly
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Dry spring 2003

Precip anomaly FMAM 2003

precipitation [%]

Pre-conditioning through:
* Low spring precipitation

Early vegetation onset -> transpiration
Low cloudiness




Dry spring 2003

ch Fischer (2007) Erich Fischer (2007)

Ryt = SW + LW =H+ L+ G



Soil water conent [mm]
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What is the effect of the anomalous conditions?
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Amplification through land-atmosphere interactions

Observations Control simulation No soil drying

Soil drying substantially enhanced Fischer et al. 2007¢c, GRL

the number of hot days



The drier the soils —the more hot days

Gridded E-Obs
Density Density
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Hirschi et al. 2010, Nature Geoscience



The drier the soils —the more hot days

B Correlatlon NHD E-Int and precedmg 3mn SPI CRU
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Dry spring — necessary but not sufficient
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The role of vegetation

32°CHE N 47°C

Zaitchick et al. 2006, Int. J. Climatol.
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The built-up of a heatwave

Heat entrainment
Increased

heat advection L
and solar radiation

Temperature
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Miralles et al. 2014, Nature Geoscience



Black Saturday February 2009

Case study







Australia heatwaves — surge through advection

Melbourne City Temperaturs Late January and early February 2009 »
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Temperaturs charts for Melbourne, Australia, 22 January to 10 February 2006, From 1885 to 2006, the mean maximum and minimum temperatures for
this ime of year were 26C and 14C respectively (79F & 57F) (www.earthsci.unimelb.edu.au/~awatkins/melbmeantemphtml). The 7 Feb peak of 45.4C
(115.5F) with 5% relative humidity was the hottestin 150 years of records for any Australian capital city. Graphs by Andrew Watkins:
www.earthscl.unimelb.edu auf/~awatkins/melbtemp.html With Andrew's permission, @ public domain by Robin Whittle 2009-02-11.
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Synoptic situation — Black Friday February 2009

National Meteorological Oceanographic Centre

MSL Analysis (hPa) Valid: 00 UTC Sat, 7 February 2009 il
Australian Government

(11:00 am EDT Sat 7 February 2009) Bureau of Metearology

TC“Freddy”

Check latest
cyclone warnings




(a) 500-m 6 (K) and wind vectors (ms™)
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Conclusions

" Anticyclones are key drivers of heatwaves
-> advection from subtropics, subsidence
(adiabatic heating), cloud-free conditions
(radiative heating)

" Land-atmosphere interactions and pre-
conditioning are important amplifiers

" Build-up of heat in PBL or advection determine
time scales of heatwave build-up
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