Application of EVA for climate change adaptation

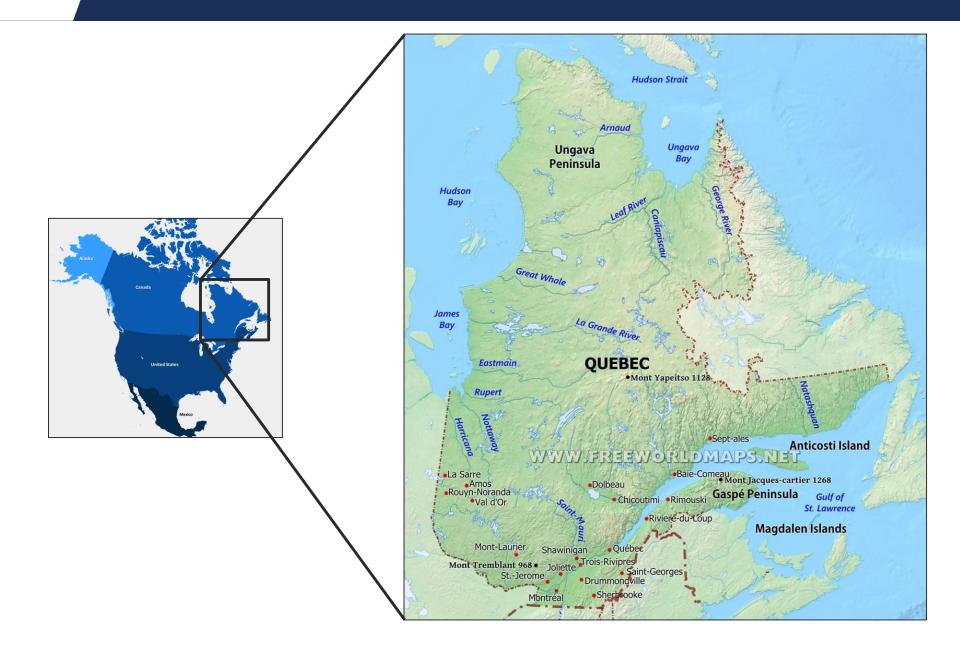
Alexis Hannart Ouranos and McGill University

30 October 2019

Context and motivation

- Approach in a stationary climate
- Bringing climate change into the picture
- Conclusion

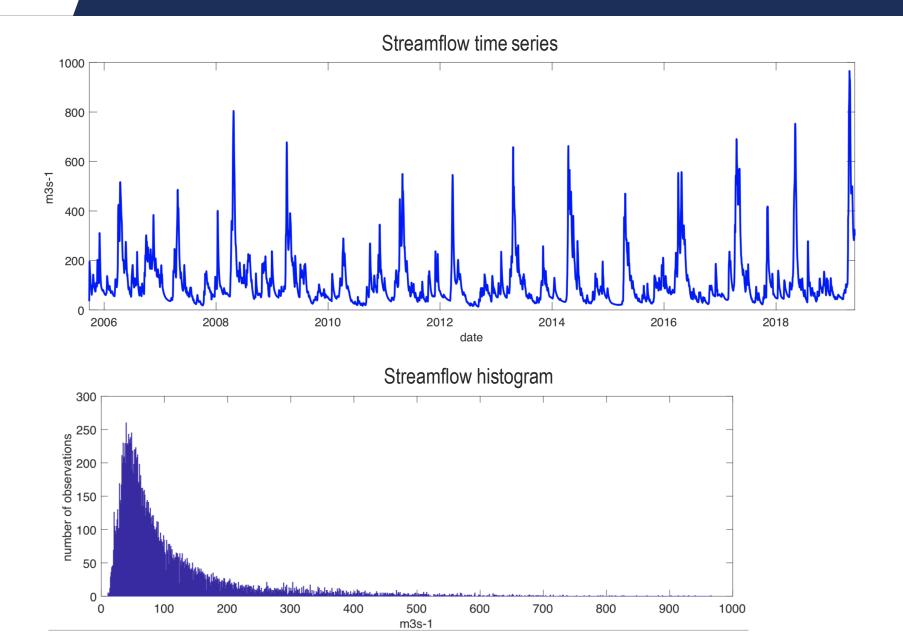
Québec



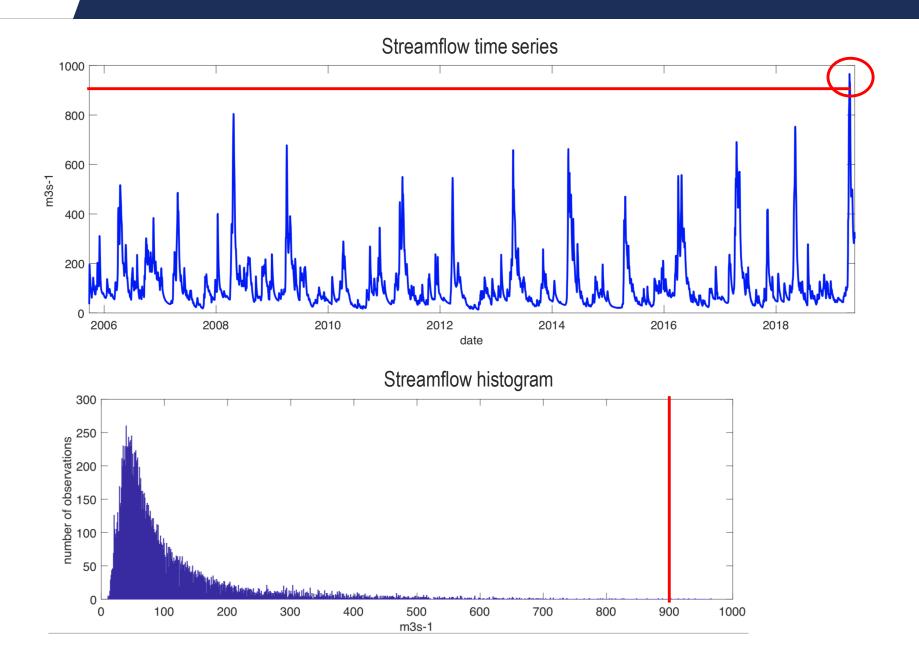
Montreal, April 2017

Québec, April 2019

Streamflow, Rouge River



Streamflow, Rouge River



Attributing extreme events to climate change

• Attribution requires to computes the probabilities p_0 and p_1 that a given observed value u (e.g. 2019 record streamflow) is exceeded.

$$p_1 = P(X > u \mid \text{GHG} = \text{on})$$
$$p_0 = P(X > u \mid \text{GHG} = \text{off})$$

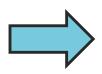
Attributing extreme events to climate change

• Attribution requires to computes the probabilities p_0 and p_1 that a given observed value u (e.g. 2019 record streamflow) is exceeded.

$$p_1 = P(X > u \mid \text{GHG} = \text{on})$$
$$p_0 = P(X > u \mid \text{GHG} = \text{off})$$

• From there, several causal metrics can be derived:

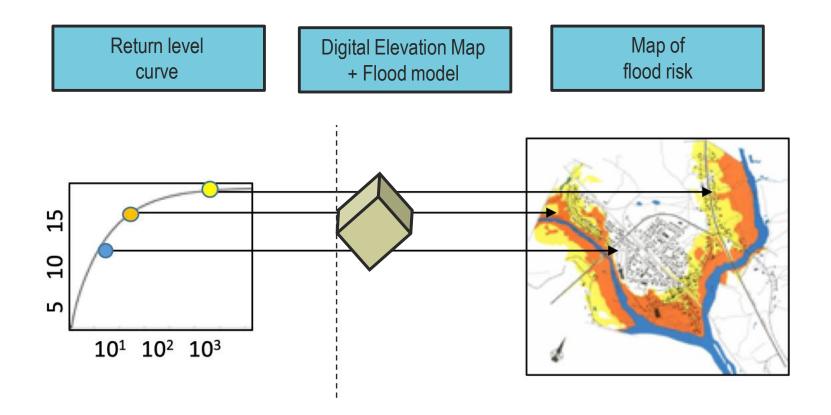
$$PN = \max\left(0, 1 - \frac{p_0}{p_1}\right)$$
$$PS = \max\left(0, 1 - \frac{1 - p_1}{1 - p_0}\right)$$
$$PNS = \max\left(0, p_1 - p_0\right)$$

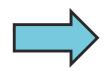


What is the value of the probability to exceed a given threshold?

 The threshold is high and may never have been reached in observations (e.g. counterfactual).

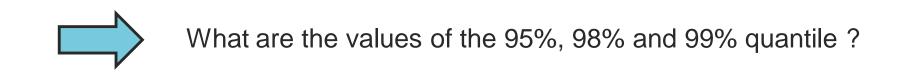
Designing maps of flood risk





What are the values of the 20, 50 and 100 years flow ?

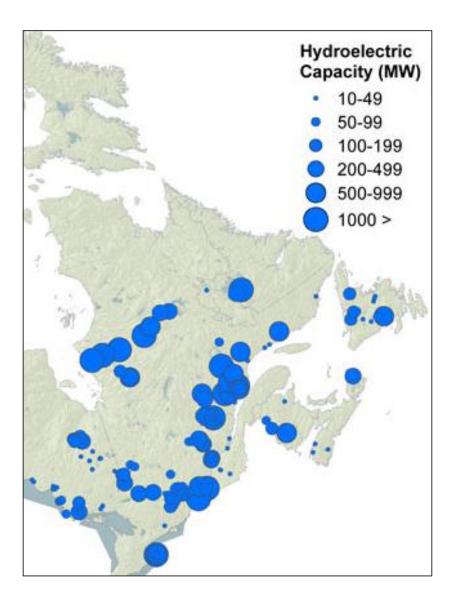
• The regulator will enforce only one map in the law. The answer is requested to be a single value.

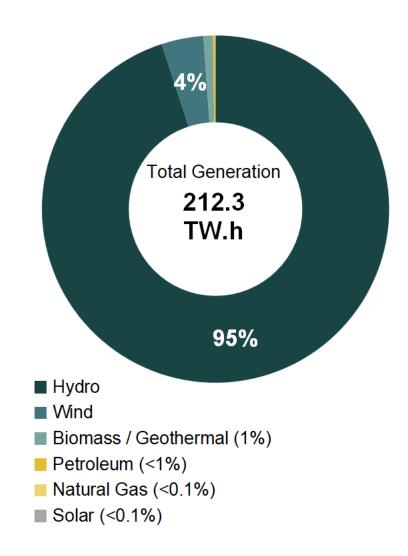


• The regulator will enforce only one map in the law. The answer is requested to be a single value.

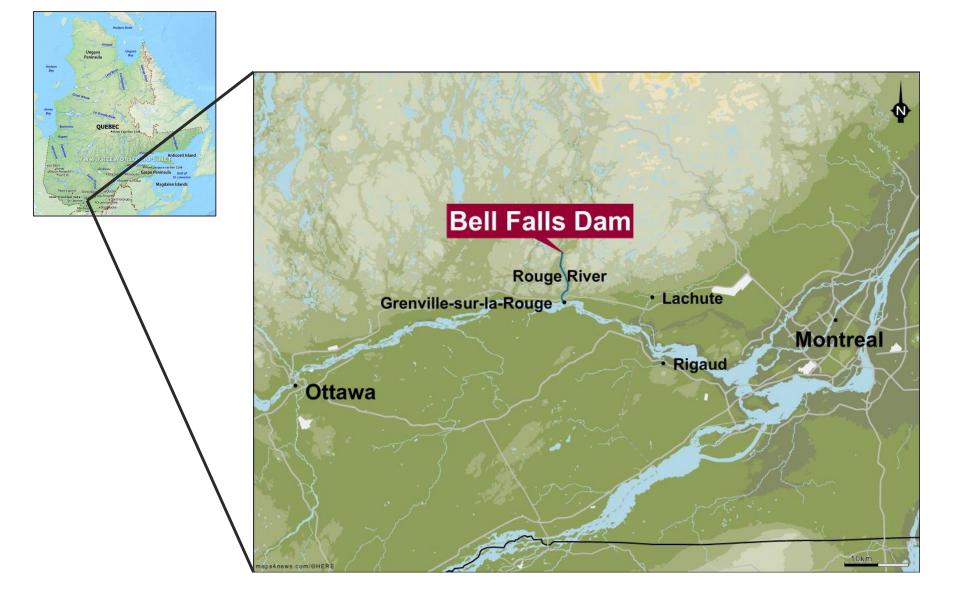
Hydropower generation

Hydropower generation

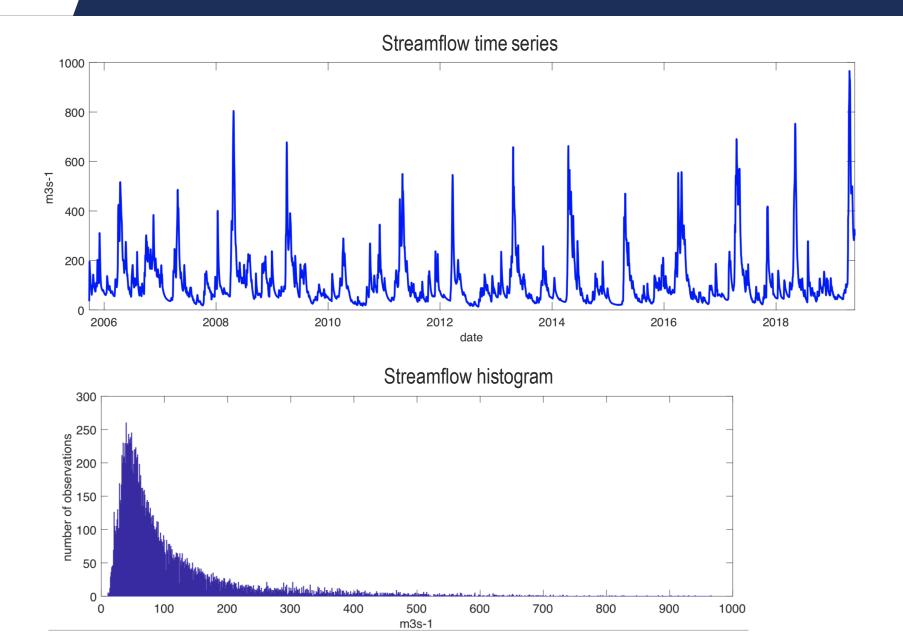




Bell Falls, Rouge River

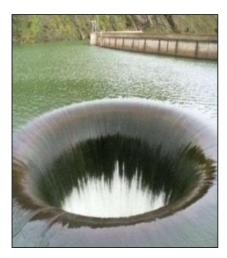


Streamflow, Rouge River



Spillways

A **spillway** is a structure used to release the surplus of flow from a dam into a downstream area.





Bell Falls, April 2019

Bell Falls, April 2019

Fears of failure of Chute-Bell dam prompt evacuations in Quebec

04/26/2019

By Elizabeth Ingram

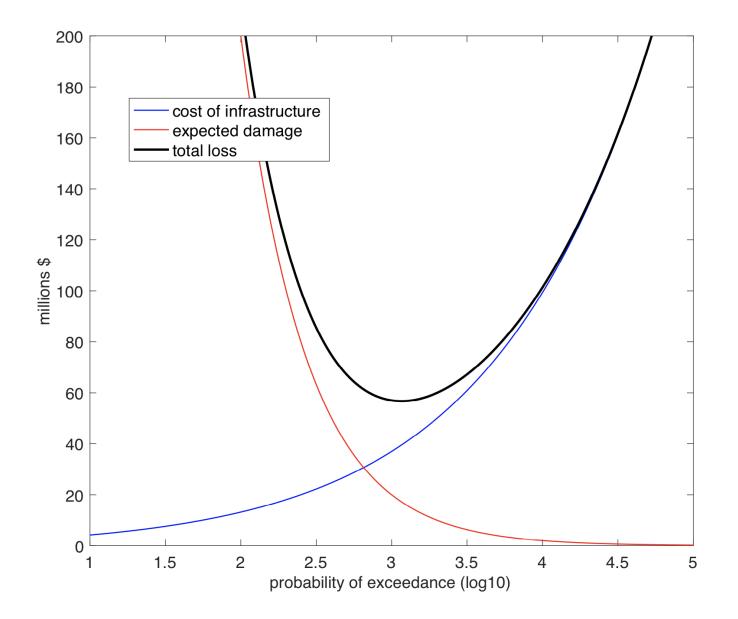
Content Director

The government of Quebec has issued a risk of dam failure alert related to the Rouge River downstream of Chute-Bell dam.

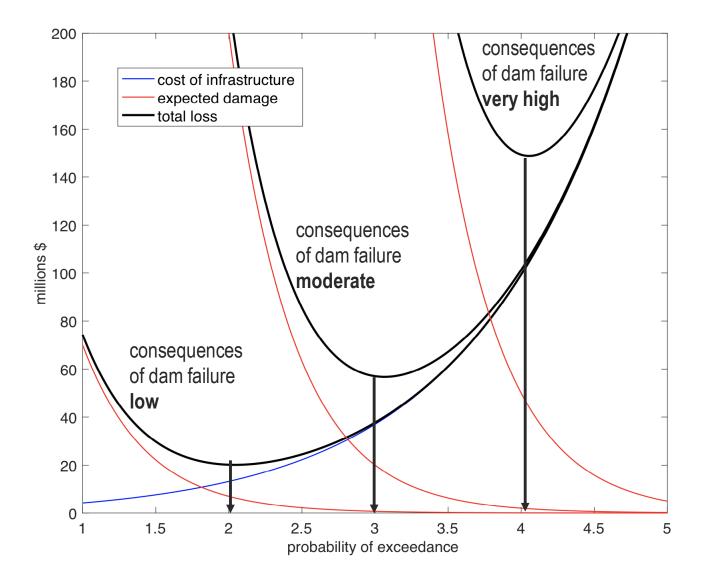
The government has directed people in the affected area to evacuate immediately, effective yesterday afternoon.

The dam impounds water for a 10-MW hydroelectric powerhouse, and water has been overtopping it due to a high flow rate in the river. The run-of-river Chute-Bell facility contains two turbine-generator units and was commissioned in 1915.

Decision making under uncertainty



Decision making under uncertainty



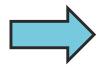
Dam Safety Act, Chapter S-3.1.01

DAM SAFETY

21. Subject to sections 21.1, 22 and 24, every dam must be able to withstand any of the following safety check floods, taking into account the highest dam failure consequence category in flood conditions:

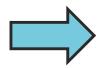
Very low or low	Centennial* (1: 100 years)
	(1. 100 10010)
Moderate or high	Millennial*
	(1: 1,000 years)
Very high	Decamillennial*
	(1: 10,000 years)
Severe	Probable maximum flood

Question asked by hydropower companies and regulating bodies



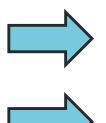
What is the value of the 10,000 years flow ?

 Civil engineers designing the spillway will build one spillway. The answer is requested to be a single value. Question asked by hydropower companies and regulating bodies



What is the value of the 99,99% quantile ?

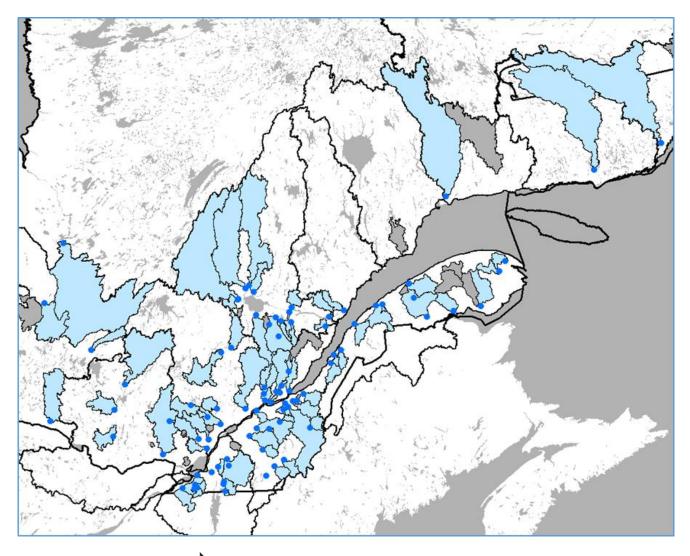
 Civil engineers designing the spillway will build one spillway. The answer is requested to be a single value.

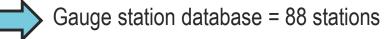


Estimate a high quantile for a given low probability

Estimate a low probability for a given high threshold

Hydrological map of the area

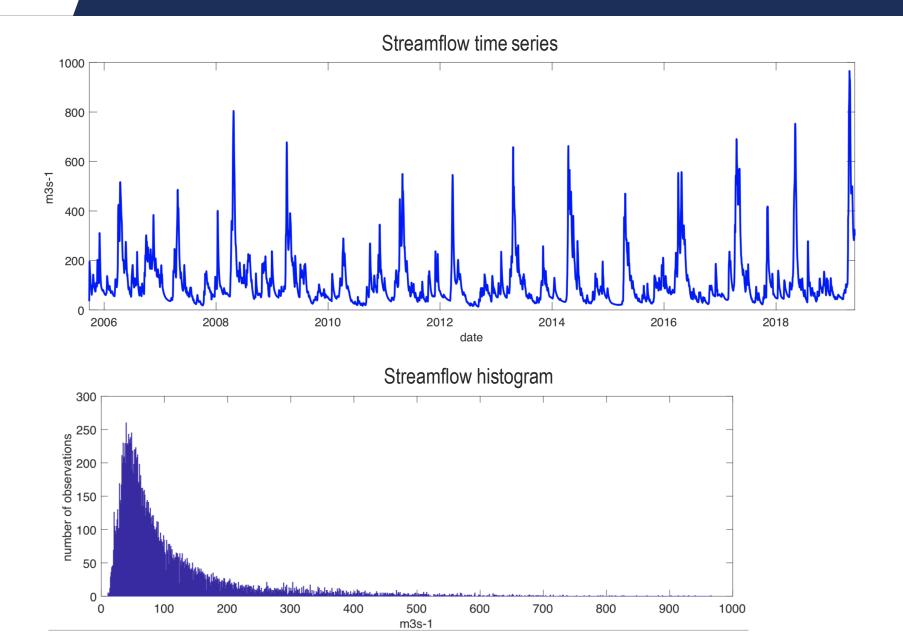




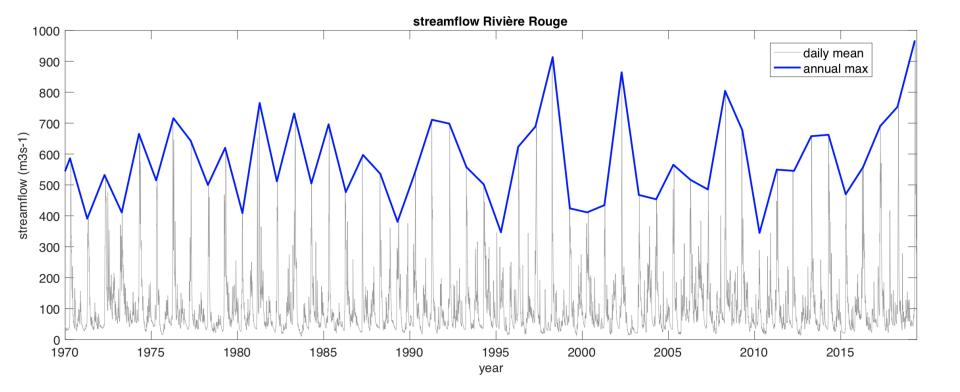
Context and motivation

- Approach in a stationary climate
- Bringing climate change into the picture
- Conclusion

Streamflow, Rouge River

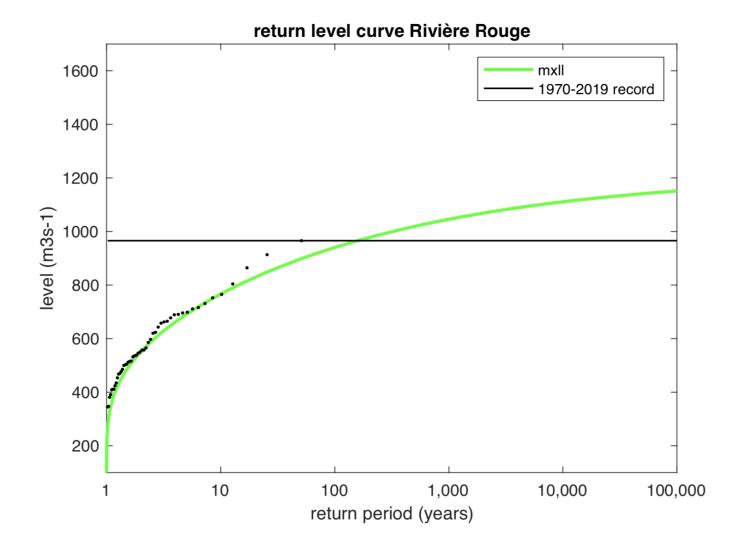


Data: annual maxima

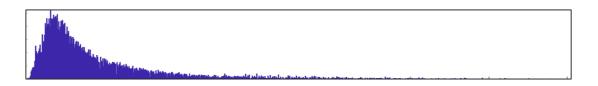


$$\boldsymbol{x} = (x_1, x_2, ..., x_n)$$
 i.i.d.
 $p(\boldsymbol{x} \mid \theta) = \prod_{t=1}^n \text{GEV}(x_t \mid \theta)$
 $\theta = (\mu, \sigma, \xi)$

Inference: maximum likelihood

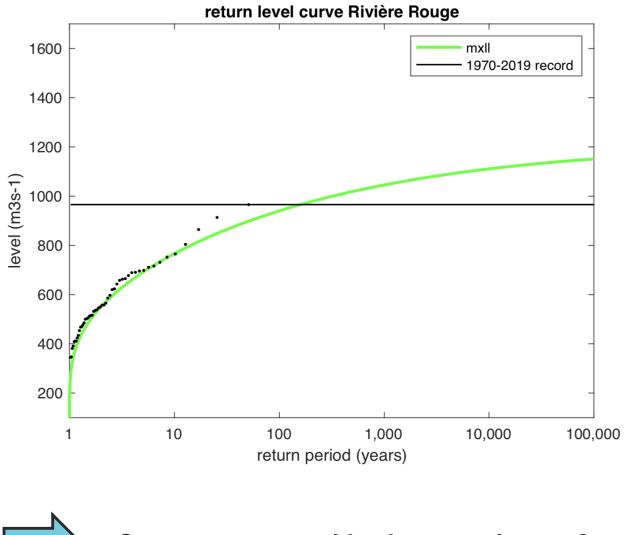


Comparison with the GPD model



 ξ as a function of threshold u 0.2 0.1 0 ŝ -0.1 -0.2 -0.3 100 200 300 400 500 600 700 0 threshold u (m3s-1)

Inference: maximum likelihood



Can we come up with a better estimator ?

Bayesian estimation: a brief overview

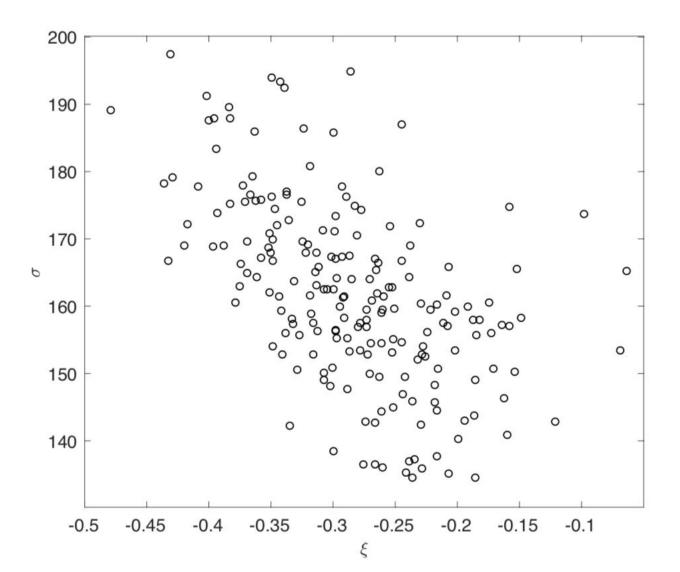
$$\boldsymbol{x} = (x_1, x_2, \dots, x_n)$$
$$p(\boldsymbol{x} \mid \boldsymbol{\theta}) = \dots$$
$$\pi(\boldsymbol{\theta}) = \dots$$
$$p(\boldsymbol{\theta} \mid \boldsymbol{x}) \propto p(\boldsymbol{x} \mid \boldsymbol{\theta}) \ \pi(\boldsymbol{\theta})$$

Bayesian estimation: a brief overview

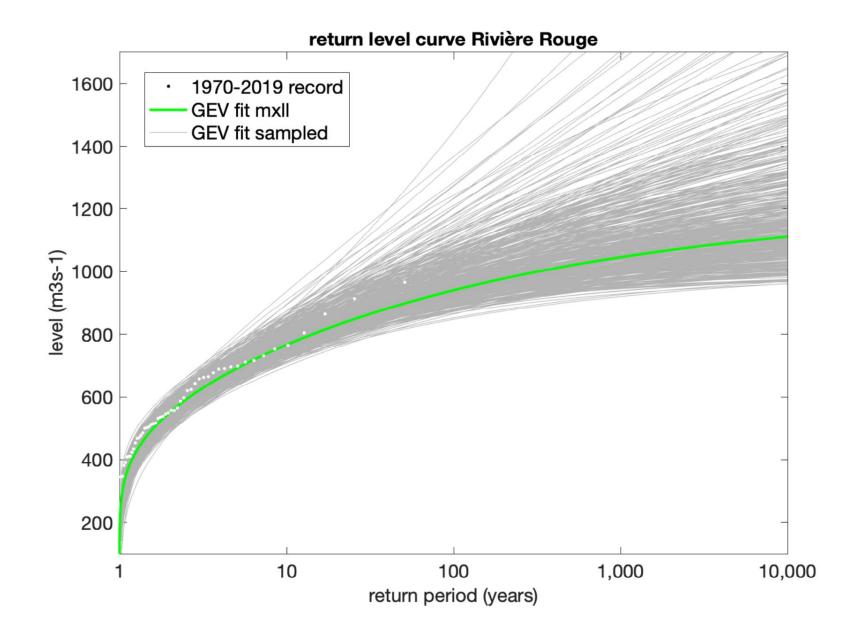
$$\begin{aligned} \boldsymbol{x} &= (x_1, x_2, \dots, x_n) \\ p(\boldsymbol{x} \mid \boldsymbol{\theta}) &= \dots \\ \pi(\boldsymbol{\theta}) &= \dots \\ p(\boldsymbol{\theta} \mid \boldsymbol{x}) \propto p(\boldsymbol{x} \mid \boldsymbol{\theta}) \ \pi(\boldsymbol{\theta}) \\ (\theta_1, \theta_2, \dots, \theta_N) \quad \text{MCMC simulations} \end{aligned}$$

$$\begin{aligned} \boldsymbol{x} &= (x_1, x_2, ..., x_n) \text{ i.i.d.} \\ p(\boldsymbol{x} \mid \boldsymbol{\theta}) &= \Pi_{t=1}^n \text{GEV}(x_t \mid \boldsymbol{\theta}) \\ \boldsymbol{\theta} &= (\mu, \sigma, \xi) \\ \pi(\boldsymbol{\theta}) \propto \sigma^{-1} \end{aligned}$$
 Northrop and Attalides 2015

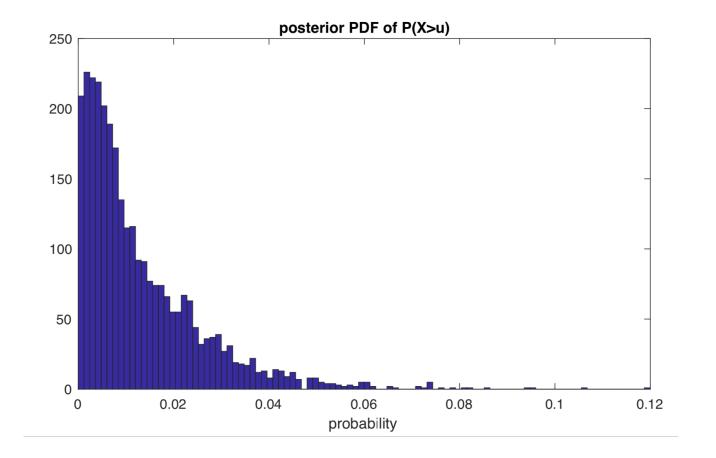
MCMC simulation of the posterior distribution



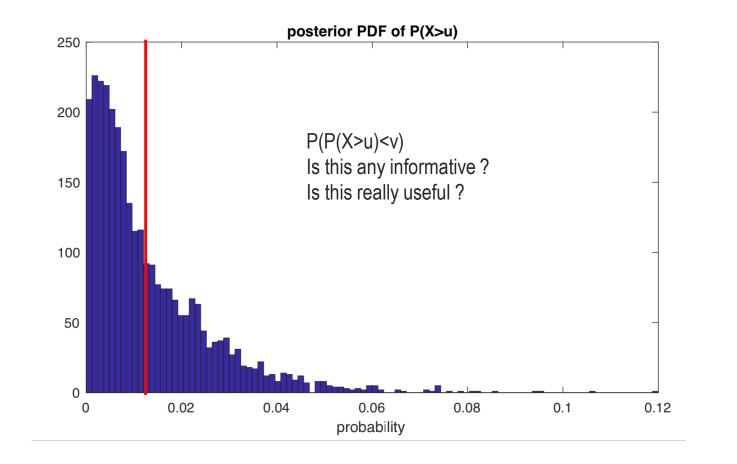
MCMC simulation of the posterior return level curve



MCMC simulation of the posterior PDF of the probability of exceedance

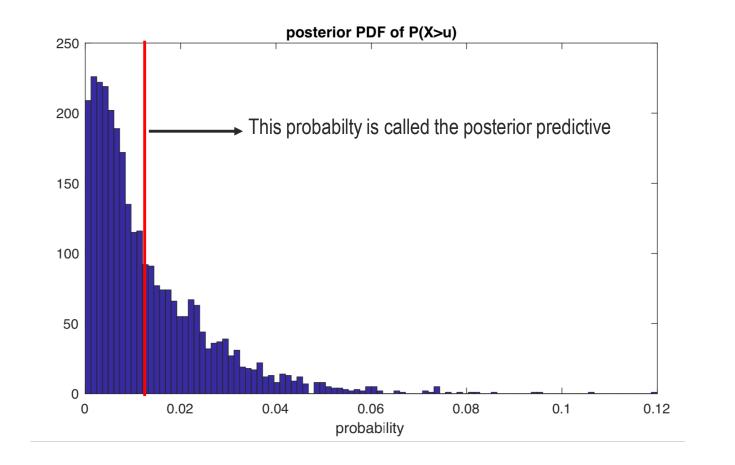


A probability on a probability ?



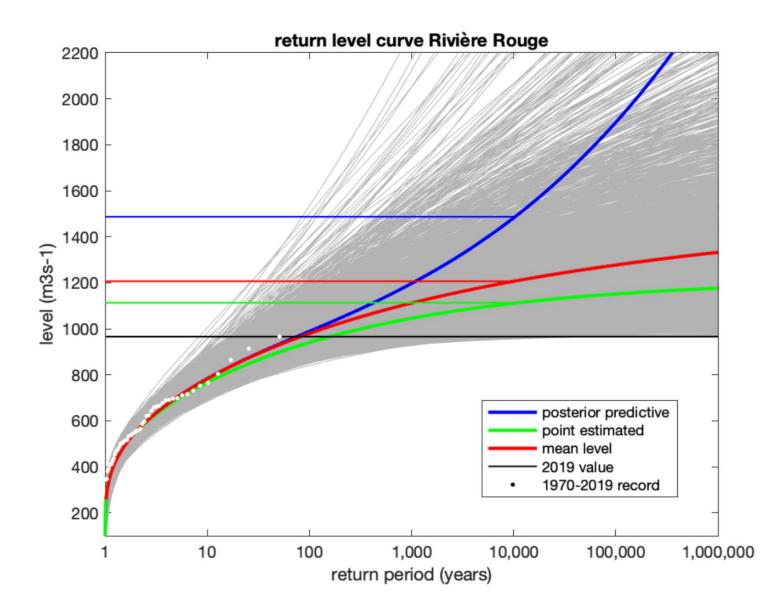
A probability density on a probability can (arguably should) always be boiled down to a single number. In this case, P(X>u) = 0.0132, or 75 years return period

A probability on a probability ?



A probability density on a probability can (arguably should) always be boiled down to a single number. In this case, P(X>u) = 0.0132, or 75 years return period

The posterior predictive: a possible estimator of the return level curve



Bayesian estimation: a brief overview

$$\begin{aligned} \boldsymbol{x} &= (x_1, x_2, \dots, x_n) \\ p(\boldsymbol{x} \mid \boldsymbol{\theta}) &= \dots \\ \pi(\boldsymbol{\theta}) &= \dots \\ p(\boldsymbol{\theta} \mid \boldsymbol{x}) \propto p(\boldsymbol{x} \mid \boldsymbol{\theta}) \ \pi(\boldsymbol{\theta}) \\ (\theta_1, \theta_2, \dots, \theta_N) \quad \text{MCMC simulations} \end{aligned}$$

$$\begin{aligned} \mathcal{C}(\theta, \theta^*) &= \dots \\ \mathcal{C}(\theta^* \mid \boldsymbol{x}) &= \mathbb{E}_{\theta \mid \boldsymbol{x}} \left(\mathcal{C}(\theta, \theta^*) \right) = \int_{\theta} \mathcal{C}(\theta, \theta^*) \ p(\theta \mid \boldsymbol{x}) \, \mathrm{d}\theta \\ \hat{\theta} &= \operatorname{argmin}_{\theta^*} \mathcal{C}(\theta^* \mid \boldsymbol{x}) \end{aligned}$$

$$\mathcal{C}(\theta, \theta^*) = \{\theta - \theta^*\}^2$$
$$\hat{\theta}_{\text{MMSE}} = \int_{\theta} \theta p(\theta \mid \boldsymbol{x}) \, \mathrm{d}\theta \simeq \frac{1}{N} \sum_{i=1}^{N} \theta_i$$

$$\mathcal{C}(\theta, \theta^*) = \mathbf{1} \{ \theta \neq \theta^* \}$$
$$\hat{\theta}_{MAP} = \operatorname{argmax}_{\theta} p(\theta \mid \boldsymbol{x}) \simeq \operatorname{mode}(\theta_1, ..., \theta_N)$$

$$\boldsymbol{x} = (x_1, x_2, ..., x_n)$$
 i.i.d.
 $p(\boldsymbol{x} \mid \theta) = \prod_{t=1}^n \text{GEV}(x_t \mid \theta)$
 $\theta = (\mu, \sigma, \xi)$
 $\pi(\theta) \propto \sigma^{-1}$

Attempt 1: conventional cost function and estimator

$$\mathcal{C}(\theta, \theta^*) = \{\theta - \theta^*\}^2$$
$$\hat{\theta}_{\text{MMSE}} = \int_{\theta} \theta p(\theta \mid \boldsymbol{x}) \, \mathrm{d}\theta \simeq \frac{1}{N} \sum_{i=1}^{N} \theta_i$$

$$\mathcal{C}(\theta, \theta^*) = \mathbf{1} \{ \theta \neq \theta^* \}$$
$$\hat{\theta}_{MAP} = \operatorname{argmax}_{\theta} p(\theta \mid \boldsymbol{x}) \simeq \operatorname{mode}(\theta_1, ..., \theta_N)$$

Attempt 3: new cost function and estimator

$$p = 10^{-4}$$
$$\mathcal{C}(\theta, \theta^*) = \left\{ F^{-1}(p \mid \theta) - F^{-1}(p \mid \theta^*) \right\}^2$$

$\hat{\theta}$ verifies :

$$F^{-1}(p \mid \hat{\theta}) = \int_{\theta} F^{-1}(p \mid \theta) p(\theta \mid \boldsymbol{x}) d\theta \simeq \frac{1}{N} \sum_{i=1}^{N} F^{-1}(p \mid \theta_i)$$

e.g:
$$\widehat{F}^{-1}(p \mid \boldsymbol{x}) = \int_{\theta} F^{-1}(p \mid \theta) p(\theta \mid \boldsymbol{x}) d\theta \simeq \frac{1}{N} \sum_{i=1}^{N} F^{-1}(p \mid \theta_i)$$

Attempt 4: new cost function and estimator

$$p = 10^{-4}$$
$$\mathcal{C}(\theta, \theta^*) = \mathbf{1} \left\{ F^{-1}(p \mid \theta) \neq F^{-1}(p \mid \theta^*) \right\}$$

$$\hat{\theta} = \operatorname{argmax}_{\theta} p\left(F^{-1}(p \mid \theta) \mid \boldsymbol{x})\right)$$

e.g:
$$\hat{F}^{-1}(p \mid \boldsymbol{x}) \simeq \operatorname{mode}\left(F^{-1}(p \mid \theta_{1}), ..., F^{-1}(p \mid \theta_{N})\right)$$

$$u = \text{fixed threshold (e.g. 2019 record value)}$$
$$\mathcal{C}(\theta, \theta^*) = \{F(u \mid \theta) - F(u \mid \theta^*)\}^2$$

$$\widehat{F}(u \mid \boldsymbol{x}) = \int_{\theta} F(u \mid \theta) p(\theta \mid \boldsymbol{x}) d\theta \simeq \frac{1}{N} \sum_{i=1}^{N} F(u \mid \theta_i)$$

u = fixed threshold (e.g. 2019 record value) $\mathcal{C}(\theta, \theta^*) = \mathbf{1} \{ F(u \mid \theta) \neq F(u \mid \theta^*) \}$

$$\widehat{F}(u \mid \boldsymbol{x}) \simeq \operatorname{mode}\left(F(u \mid \theta_1), ..., F(u \mid \theta_N)\right)$$

The posterior predictive: a possible estimator of the return level curve

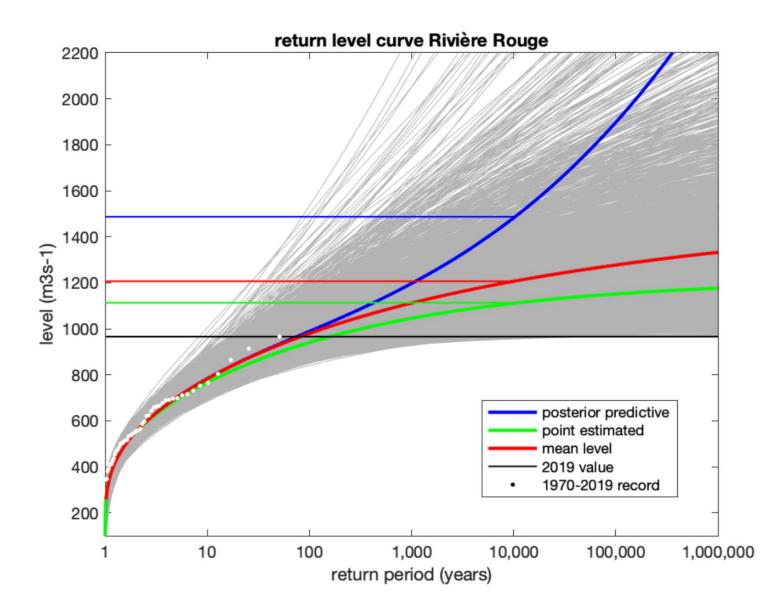
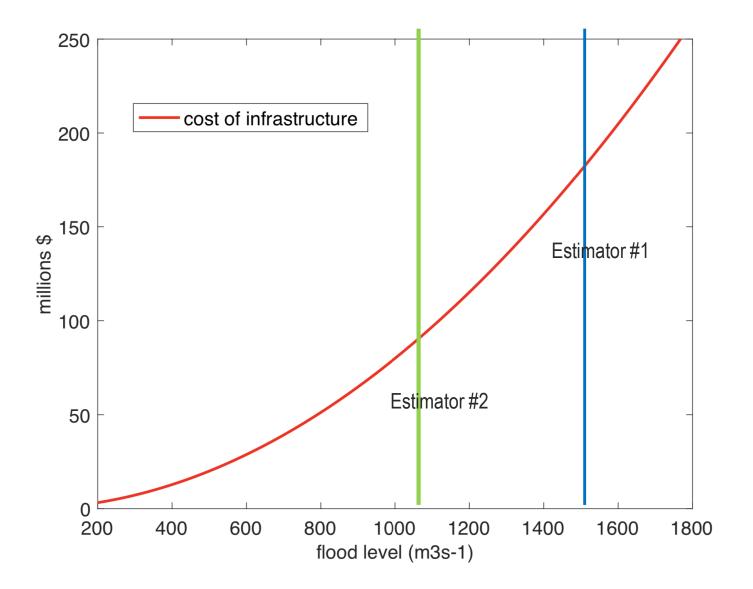


Illustration on Rouge River



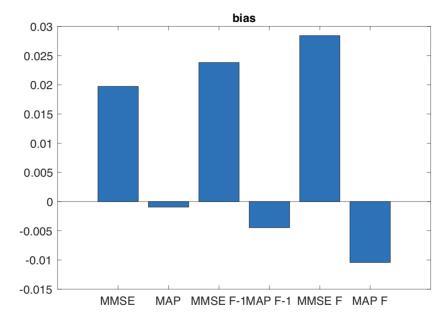
Properties and performance of estimators

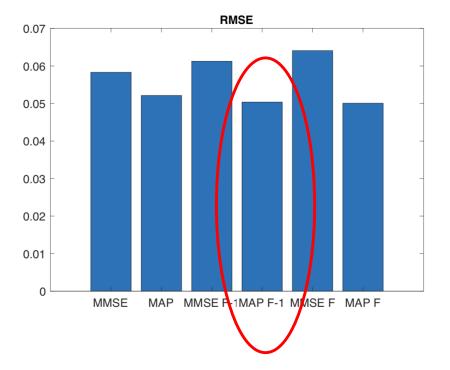
$$\mathbb{E}_{\boldsymbol{x}} \left(\widehat{F}^{-1}(p \mid \boldsymbol{x}) \right) = \int_{\boldsymbol{x}} \widehat{F}^{-1}(p \mid \boldsymbol{x}) p(\boldsymbol{x} \mid \theta) \, \mathrm{d}\boldsymbol{x} = F^{-1}(p \mid \theta) \quad ?$$

$$\mathbf{V}_{\boldsymbol{x}} \left(\widehat{F}^{-1}(p \mid \boldsymbol{x}) \right) \to 0 \text{ as } n \to \infty \quad ?$$

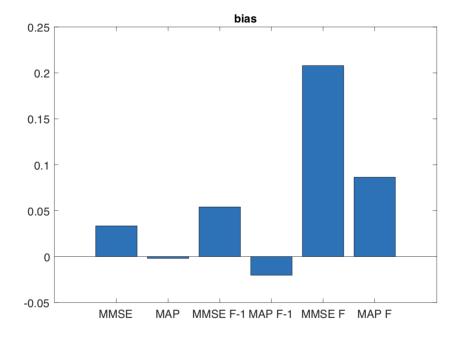
$$\mathbf{MSE} = \mathbb{E}_{\boldsymbol{x}} \left(\left\{ \widehat{F}^{-1}(p \mid \boldsymbol{x}) - F^{-1}(p \mid \theta) \right\}^2 \right) \text{ minimal } ?$$

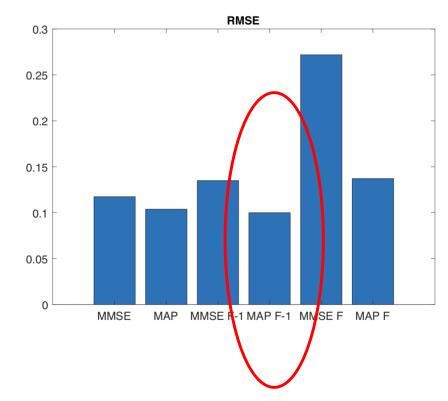
Simulation testbed results for $p = 10^{-2}$ and xi < 0



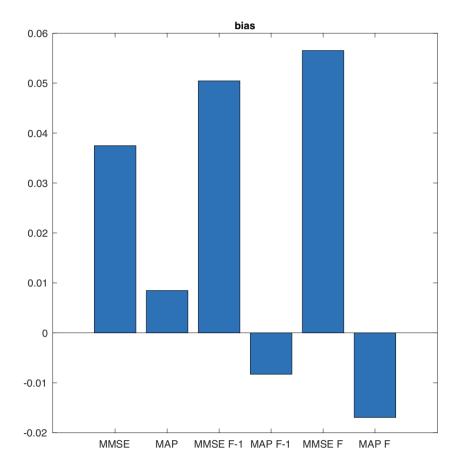


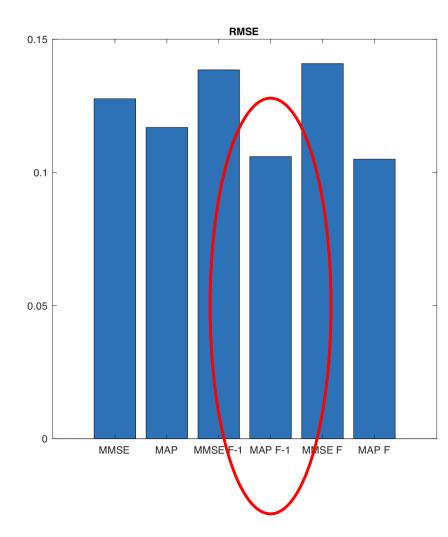
Simulation testbed results for p = 10⁻⁴ and xi < 0



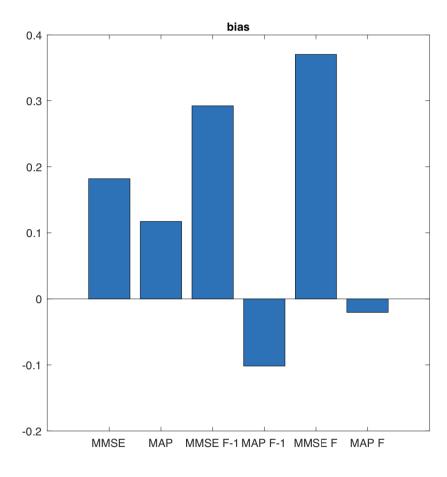


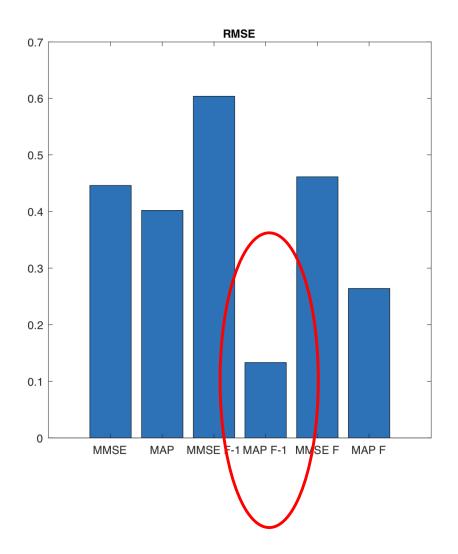
Simulation testbed results for $p = 10^{-2}$ and xi > 0





Simulation testbed results for $p = 10^{-4}$ and xi > 0





Preliminary conclusion

- Even for a single parametric model, several different point estimators of high quantiles and low probabilities can be proposed.
- Within a Bayesian approach, such estimators can be obtained by choosing alternative cost functions that are ad-hoc to the problem.
- The conventional estimator of a high quantile (inverse CDF evaluated at p with MLE of theta) is not necessarily the best solution. Neither is the intuitive solution of the « posterior predictive ».
- Instead, the « MAP quantile » estimator appears to consistently perform best, based on simulation results.
- More simulation and theoretical grounding for these estimators is needed.
- Significant implications for high quantiles.

• Context and motivation

• Approach in a stationary climate

• Bringing climate change into the picture

• Conclusion

Spring floods 2017 and 2019

Avril 2017

Avril 2019

Read in the media:

• « These events are more and more frequent, and they will become even more frequent in the future. »

Spring floods 2017 and 2019

Avril 2017

Avril 2019

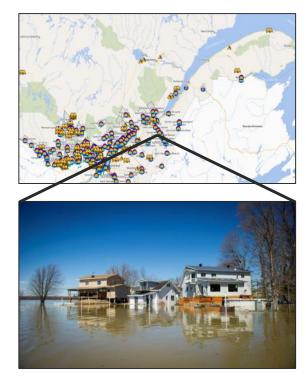
Return period: 50 years

Return period: 50 years

Two in three years: Return period 850 years under independance assumption

Avril 2017

Avril 2019





- What is the influence of CC on flood risk in Québec ?
- How can it be taken into account in the new flood risk maps?

Overall workplan

thématique		axe de recherche		projet	expertise	%	2019			2020		2021		2022		2023		
documentation des crues																		
modélisation hydraulique																		Τ
évolution du climat	Axe 1	Incidence du changement climatique sur les crues	Projet 1.1	analyse, détection et attribution	hydro, climat, stat, obs	17%					<u> </u>							
			Projet 1.2	production des simulations contrefactuelles	hydro, climat	3%												
	Axe 2	Modélisation hydroclimatique et incertitudes	Projet 2.1	modèles, simulations et observations climatiques	climat, stat, obs	12%												
			Projet 2.2		hydro, climat, stat, obs	12%												
			Projet 2.3	nouvelles simulations hydrologiques	hydro	6%												
			Projet 2.4	analyse fréquentielle	stat, hydro	15%												
			Projet 2.5	intégration et transition vers l'hydraulique fluviale	hydro, crues, obs	15%												
	Axe 3	Questions pointues et divulgation	Projet 3.1	veille et analyses ad-hoc	com, ad-hoc	10%				-								
			Projet 3.2	communication de la qualité des résultats	com, hydro, climat, stat, obs	10%												

- 3 years,
- ~7m CAD,
- ~30 people.

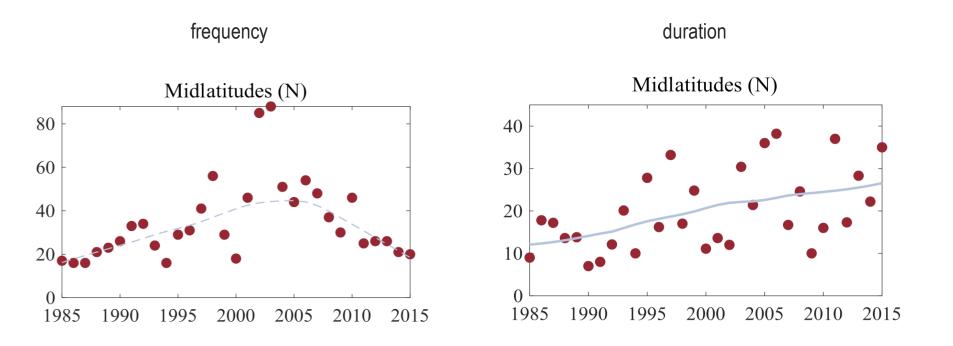
• Context and motivation

• Approach in a stationary climate

• Bringing climate change into the picture: detection

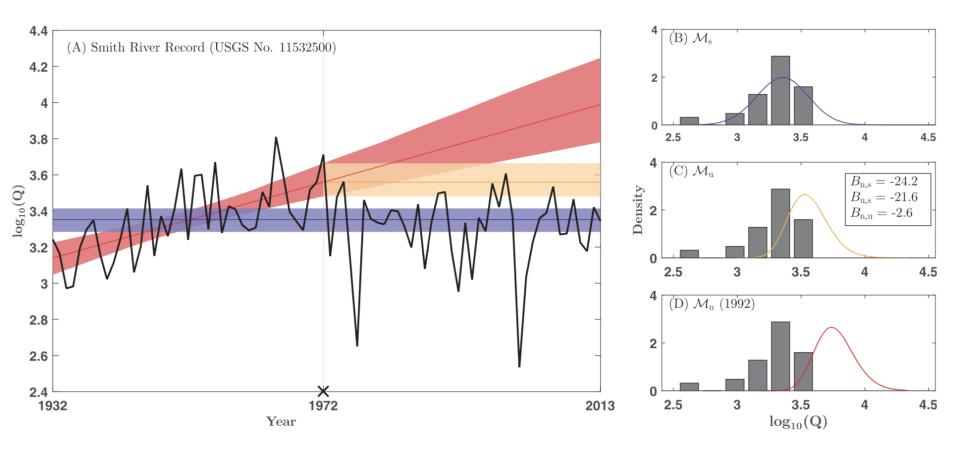
Conclusion

Detection: is there a change ?



Najibi et al. 2018

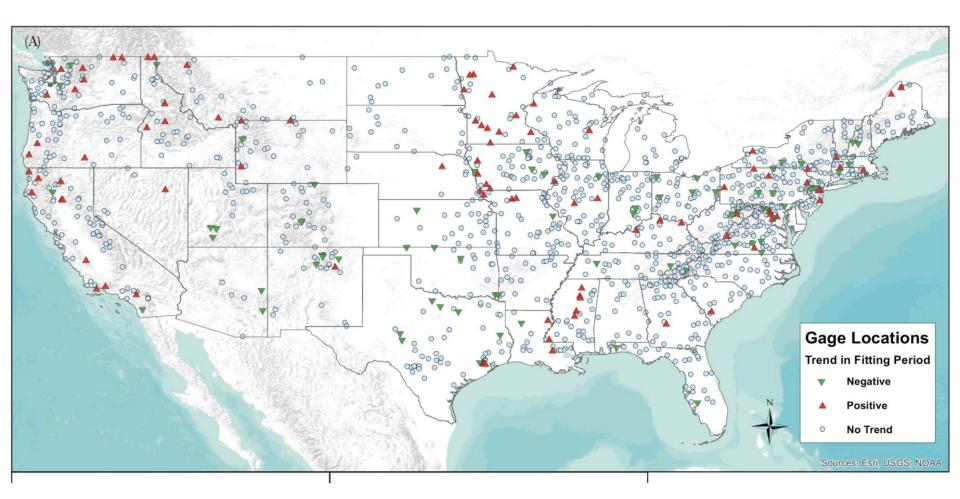
Detection: is there a change ?



USGS database

Luke et al. 2017

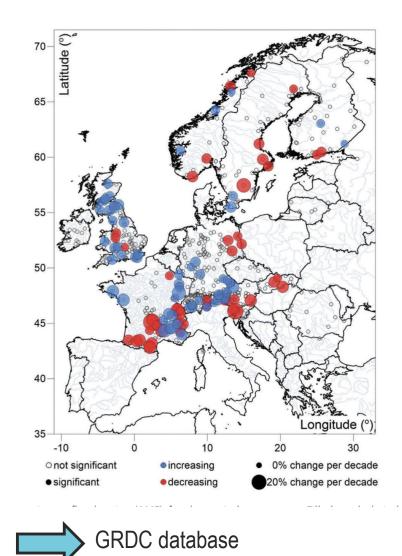
Detection: is there a change ?



USGS database

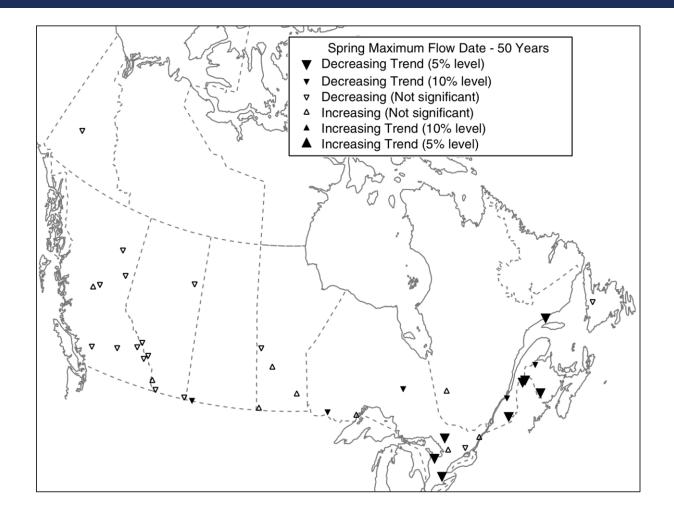
Luke et al. 2017

Detection: is there a change ?



Mangini et al. 2018

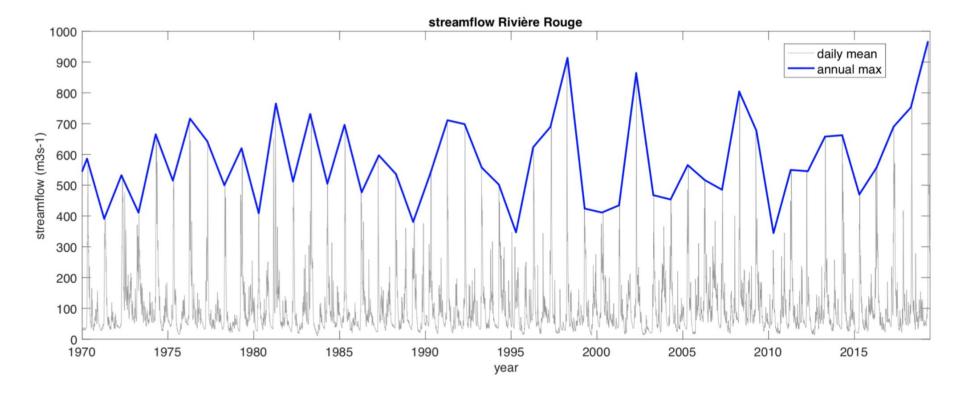
Detection: is there a change ?



Gauge station database

Burn et al. 2010 Burn and Withfield 2018

Detection: is there a change ?



Gauge station database

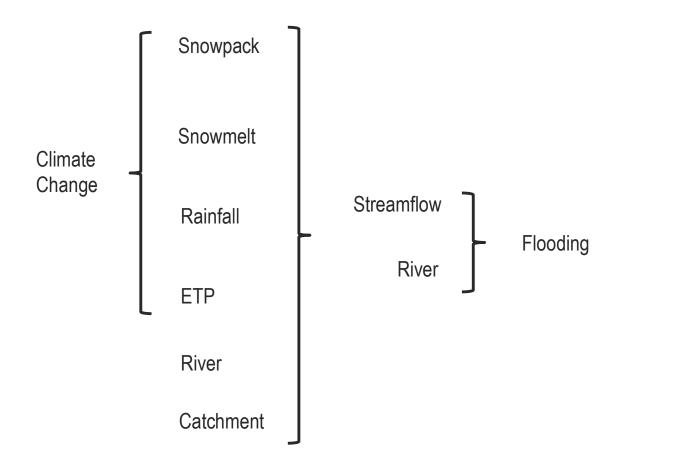
Hannart et al. EVA 2019

• Context and motivation

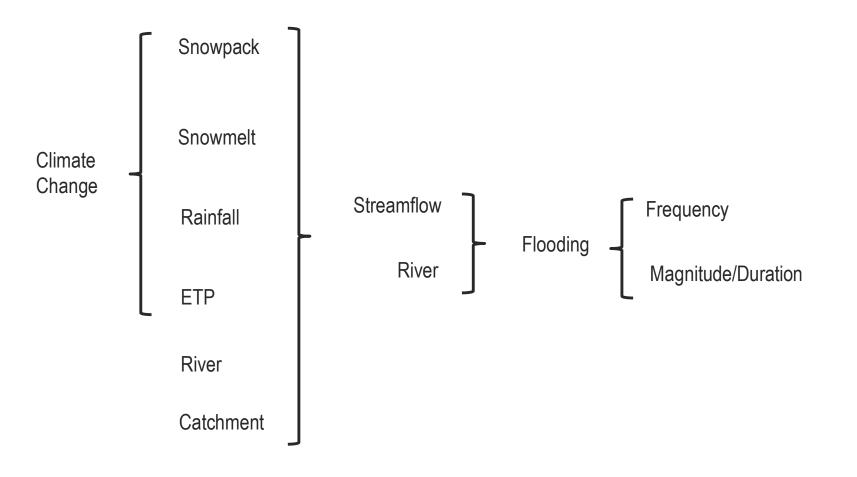
• Approach in a stationary climate

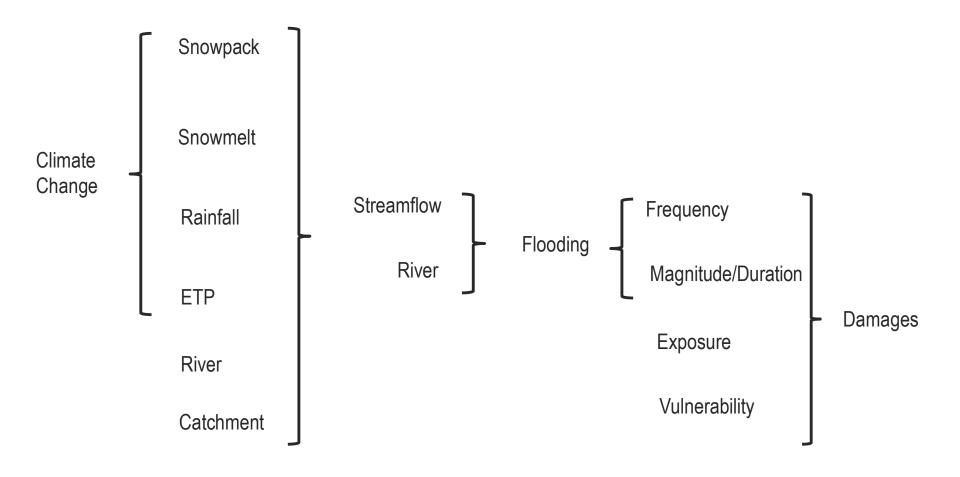
• Bringing climate change into the picture: attribution

Conclusion

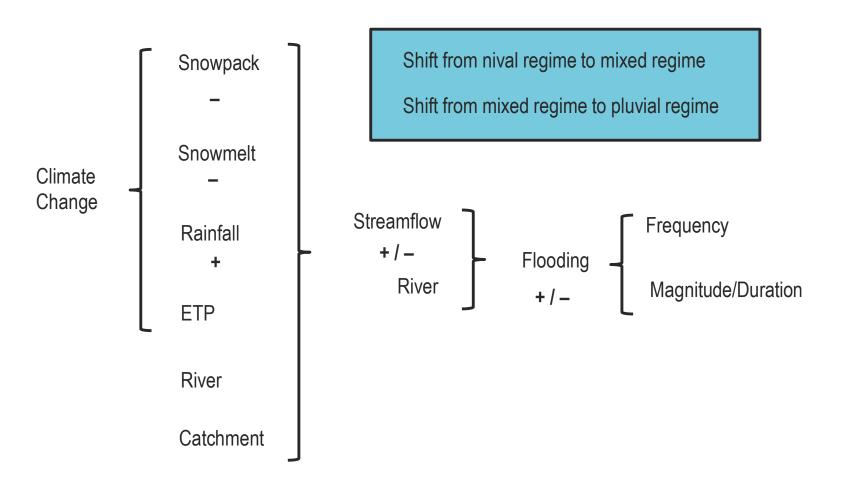


after Kreibich et al. 2019

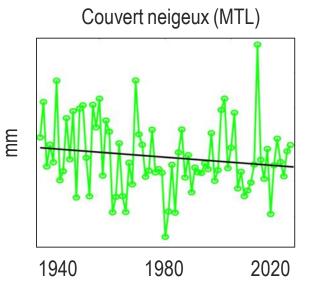


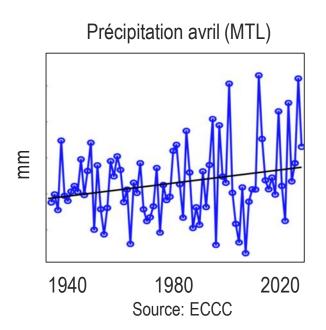


after Kreibich et al. 2019

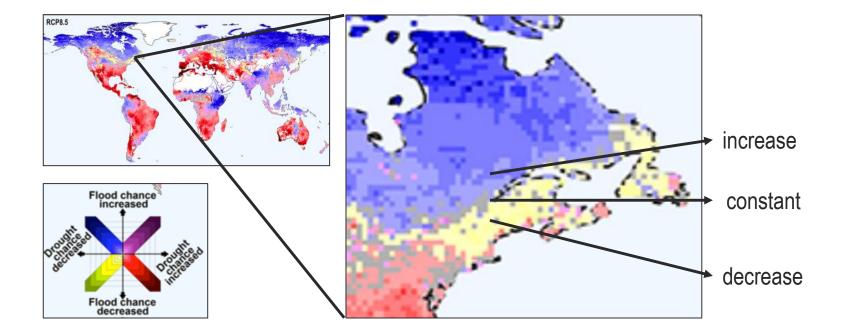


Two main antagonic effects



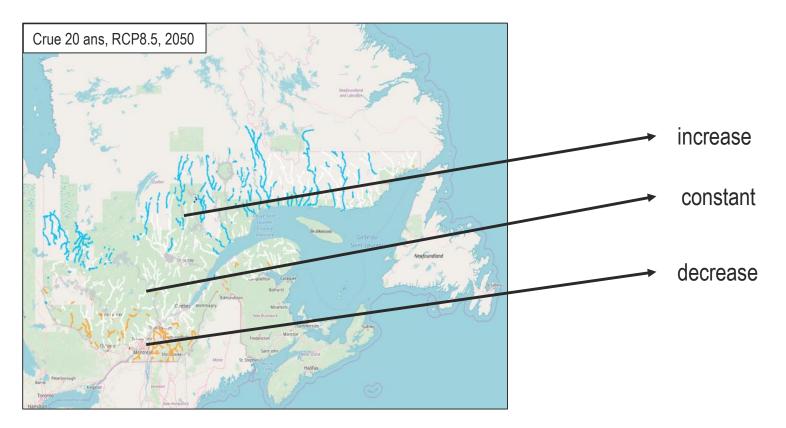


Projected changes (ISI-MIP)



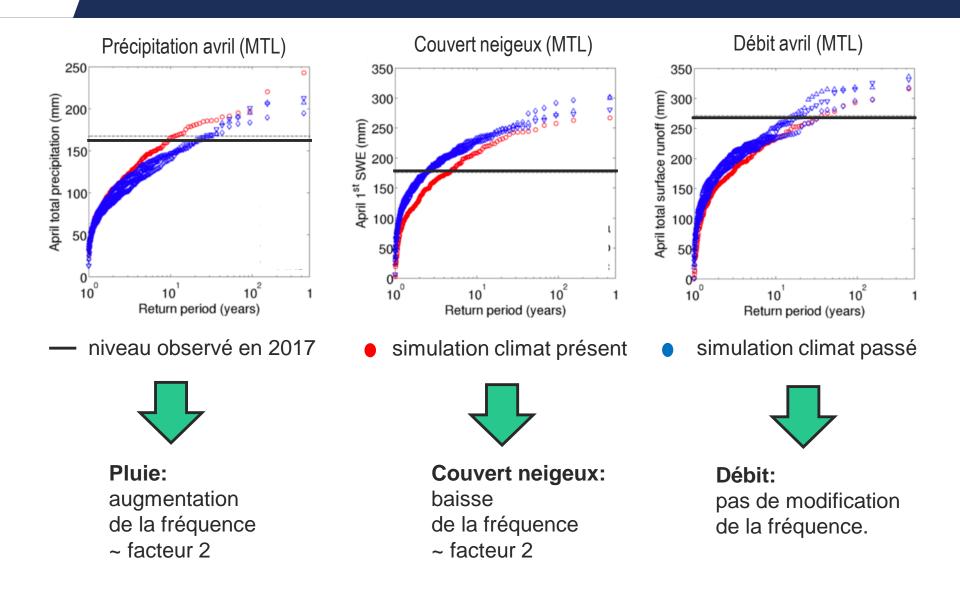
Source: Asadieh and Krakauer 2017

Projected changes (CQ2)

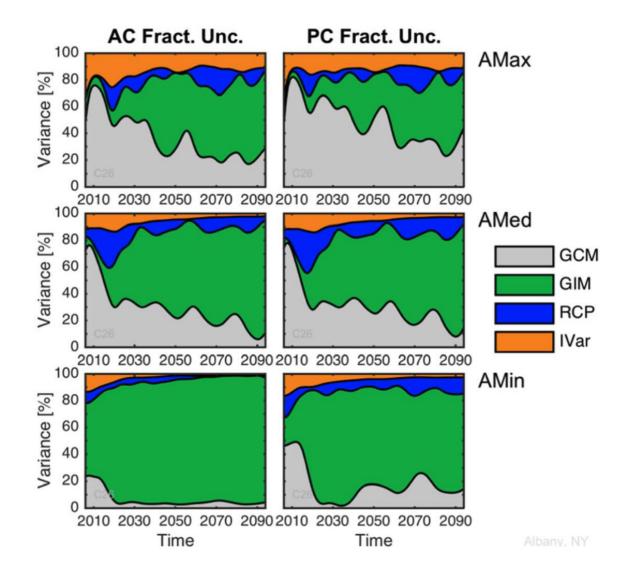


Source: Atlas 2018, DEH/Ouranos

Numerical experiments



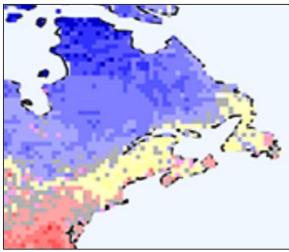
Large uncertainty in hydroclimatic model response



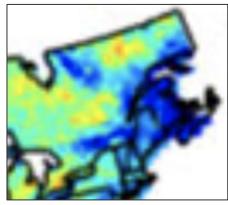
Giuntoli et al. 2018

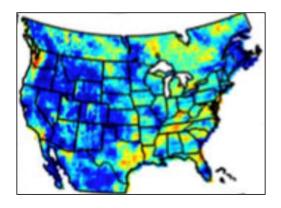
Large uncertainty in hydroclimatic model response

Réponse moyenne de tous les modèles

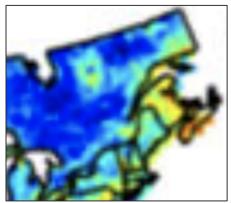


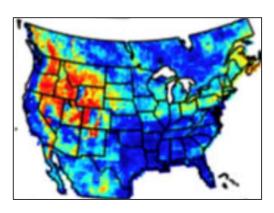
Dispersion générée par les modèles climat

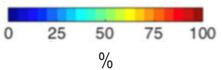




Dispersion générée par les modèles hydro







• Context and motivation

• Approach in a stationary climate

• Bringing climate change into the picture: mapping

Conclusion

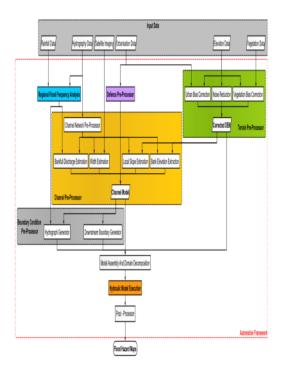
Mapping: models and observations in cascade

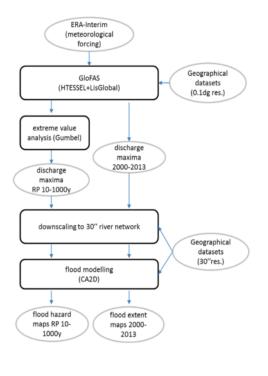
• Schéma conceptuel d'un modèle de calcul de cartographie du risque de crue.

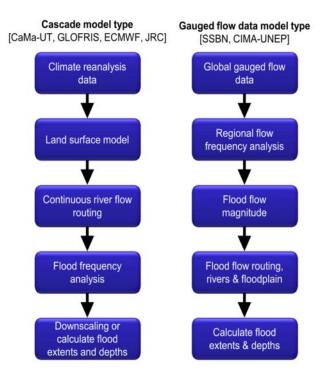
Sampson et al. 2015

Dottori et al. 2016

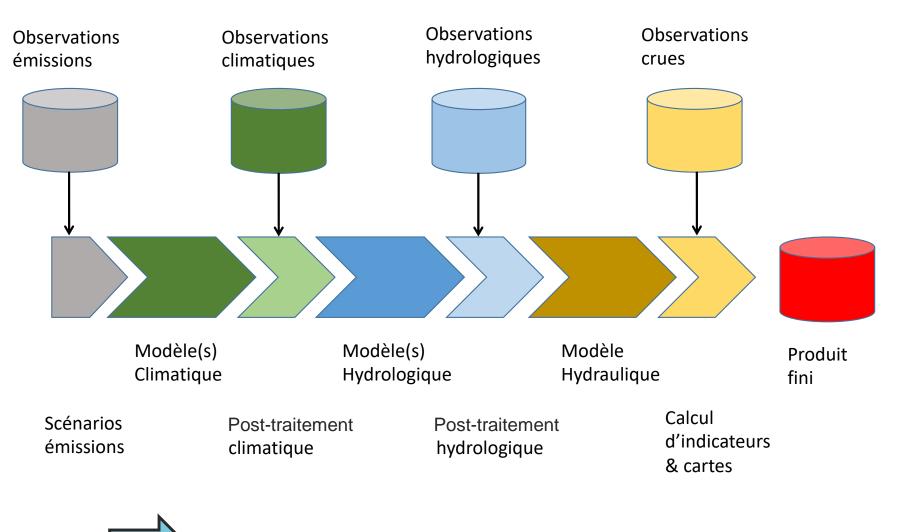
Trigg et al. 2016





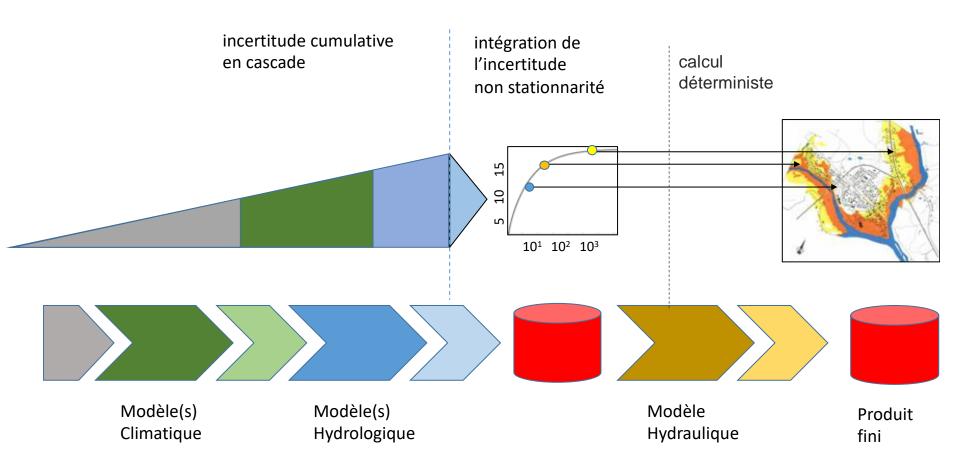


Computation: models and observations in cascade

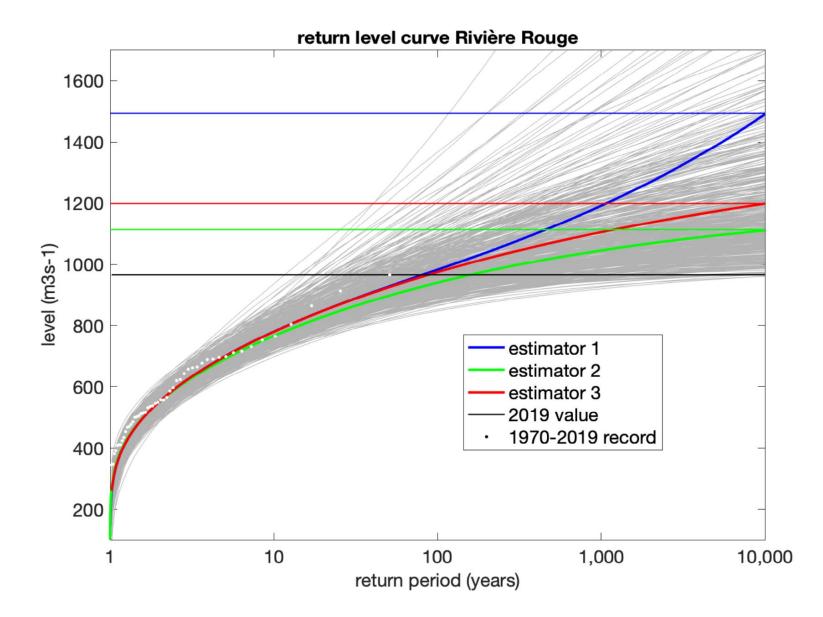


Solution retenue: schéma en cascade complet.

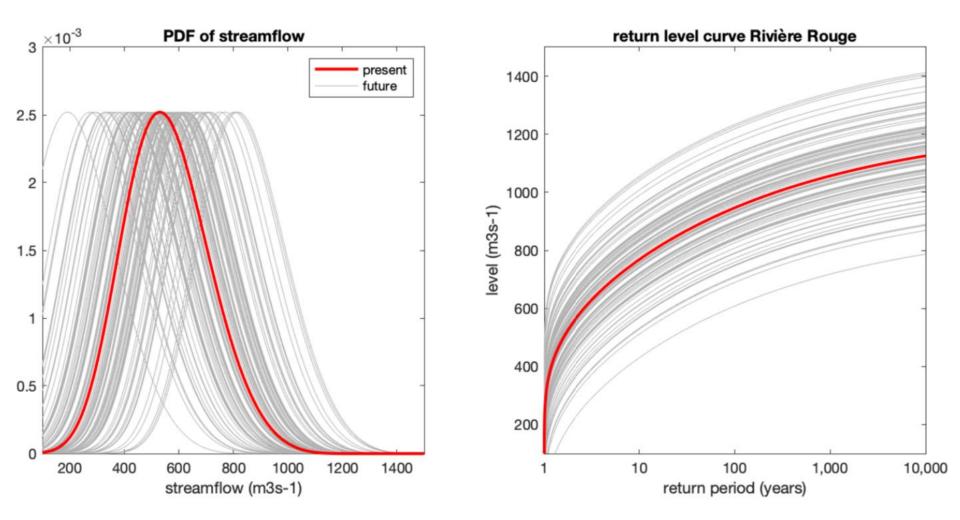
Computation: models and observations in cascade



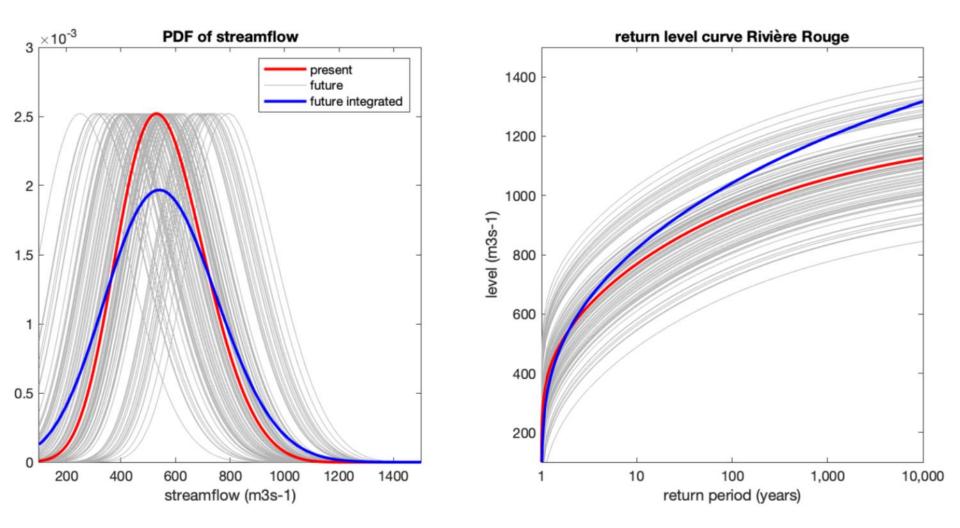
Rouge River sampling uncertainty



Climate change uncertainty effect on return levels



Climate change uncertainty effect on return levels



• Context and motivation

• Model and inference

• Results

Conclusion

Conclusion

- Estimating high quantiles is difficult.
- The GEV extrapolation has many well-known (and less well-known) problems, but still the 'least worst' option by default thus far.
- Physics may come to the rescue of statistics.
 - careful attribution of extremes to identify drivers,
 - careful modelign of the dependence between drivers.
- Building climate change into the picture complexifies what is already a difficult problem.
- How to do this in practice is an active and interesting area of research.

Thank you