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Based on lectures and supporting material provided by:

e Dan Cooley, Colorado State University, USA
e Anthony Davison, EPFL, Switzerland
e Philippe Naveau, CNRS, France

e and more.



Books on Extremes

e Coles (2001), An Introduction to Statistical Modeling of
Extreme Values

e Beirlant et al. (2004) Statistics of Extremes: Theory and
Applications

e de Haan and Ferreira (2006) Extreme Value Theory

e Resnick (2007) Heavy-Tail Phenomena: Probabilistic and
Statistical Modeling

Software

R packages: ismev, evd, evir, SpatialExtremes, extRemes

Short Course Materials

http://www.stat.colostate.edu/~cooleyd/MontrealJSM2013/



Why study extremes?

Although infrequent, extremes have large human impact.

Colorado precipitation examples:

Big Thompson Flood, 1976 Ft Collins Flood, 1997
e 145 Killed e 5 Killed

e $41m damage e $250m damage

Eve Gruntfest, UCCS John Weaver



Fort Collins Precipitation

Ft. Collins Summer Precip

daily precip (in)

I I I I I I
1950 1960 1970 1980 1990 2000

date

e Spike corresponds to 1997 event, recording station not at
center of storm.

e Associated question: How unusual was event?



“Ordinary’” vs Extreme Value Statistics

“Ordinary’” Statistics: Describes main part of distribution.

Extremes: Characterizes the tail of the distribution.

“Ordinary” Stats

Extremes

N
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Why study extremes?

Application areas:

e hydrology (stream/river flows, flooding)

e Climate variables: precipitation, wind, heat-waves, ...

e finance

e insurance/reinsurance

e engineering (structural design, failure)

e Not much done (yet) in medicine, biology, ecology
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S&P 500 Log-Returns

S&P 500 Log—Returns 1980-2009
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e Black Monday: Oct 19 1987; Volatility in 2008
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European 2003 heatwave: what was the event ?

August 2003 Tmax anomaly

e There are multiple ways to define an event, even for a heatwave
— which variable, which threshold ?
—  which spatial and temporal scales ?
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Part I. Univariate block-maximum approaches

e [llustrative case study: Fort Collins precipitation.
e Max-stability and the GEV distribution.

e Inference.

e Uncertainty estimation.

e Example.



Return Levels and Return Periods

The m-year return level as the high quantile for which the
probability that the annual maximum exceeds this quantile is
1/m.

e Canonical example: “100-year flood" .

e Financial equivalent: " value-at-risk’ .

The return period of a particular event is the inverse of the
probability that the event will be exceeded in any given year.

Both of these definitions assume stationarity. See Cooley
(2012) and references therein for non-stationarity setting.
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Probability Density Function (PDF)

probability density function
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Fort Collins Precipitation

Ft. Collins Summer Precip

daily precip (in)

I I I I I I
1950 1960 1970 1980 1990 2000

date

e Spike corresponds to 1997 event, recording station not at
center of storm.

e Associated question: How unusual was event?



How unusual was the Fort Collins event?

Measured value for 1997 event: 6.18 inches.

Let’'s analyze data preceding the event (1948-1990) and es-
timate the ‘return period’ of an event of 6.18 inches.

We need to answer the question: “What is the probability
the annual maximum event is larger than 6.18 inches?”

Also, estimate the ‘100-year return level’.

Both questions require extrapolation into the tail. Largest
observation (1948-1990) is 4.09 inches.

Model the data in two ways:
1. Model all (non-zero) data.
2. Model only extreme data.

Note: R code for both analyses in 1BlockMaxima.R Script.



Estimating the probability of a rare event

e The easiest way: empirical frequency

1 N
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Estimating the probability of a rare event

e The easiest way: empirical frequency

1 N

e A very noisy estimate:

=)

1
p N

RE =

To estimate a return time of 100 years
with a 10% error, one needs
10,000 years of data.
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Modeling all precipitation data

Let X; be the daily “summer” precipitation amount for Fort
Collins. (Summer = Apr-Oct)

To model precipitation, we need to account for zeroes.

X >0 w.p. p

5= 0.218.
X, =0 wp. 1—p P=0218

Assume: {

Further, assume that [X; | X; > 0] ~ Gamma(«a, 3).
ML estimates: a = 0.784, 3 = 3.52.
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All precipitation model estimate

P(X; > 6.18)

P(X;>6.18| X; > 0)P(X; > 0)
(1 — Fx(6.18))(0.218)
1.47 «10719(0.218) = 3.20« 107!

P(ann max > 6.18) 1 — P(entire year's obs < 6.18)
1 — (1 — P(indiv obs > 6.18))%*
1—(1—3.20%10 )24

6.86 %« 10°°

(Assumes independence of daily observations, 214 “summer”
days in a year.)

Return period = (6.86 x 107°)~! = 145,815, 245 years.

Estimate of 100-year return level: 3.06 inches.



All precipitation model

Gamma QQ Plot

model

empirical

Note: 98% of model’'s mass and 97% of data are < 1.



the kernel estimator

e Kis the so-called kernel:

K(z)= [~ N(z)dz

e |t basically smoothes the estimation.
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probability density function tail behaviour
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Modeling annual maxima

Approach: Extract annual maxima and fit a model.

Ft. Collins Summer Precip

daily precip (in)

1950 1960 1970 1980 1990

date



Modeling annual maxima

Let M, = maX;=1,.. ,(X:). Assume M, ~ GEV(u,o,§).
(We will discuss why the GEV is the right distribution later.)

:LL _1/5
Fu (2) = P(M, < z) = exp 1+g )] |
ML estimates: u=1.11, c = 0.4 31.

P(ann max > 6.18) =1 — F,,(6.18) = 0.008.
Return period point estimate: 0.00871 = 121 years.

100-year return level point estimate: 5.80 inches.



Modeling annual maxima

GEV QQ Plot
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Note: Plot shows only annual maxima.



Why use only ‘extreme’ observations?

Two approaches for extracting extreme observations:
1. Block-maximum approach (done above)
2. Threshold-exceedance approach

Heuristic explanation: Phenomena which generate extreme
observations are fundamentally different than those which
generate typical observations.

Mathematical explanation: Assume X; has cdf Fx(x).
Fy,(x) = P(M, <x) P(X;<zforallt=1,...,n)

P"(X: < )

E% ()

If we know Fx exactly, then we know Fj;, exactly. But if we
have to estimate Fx, any errors get amplified by n.

“Let the tails speak for themselves.”



Why is the GEV the right distribution?

Answer: In a minute.



Why is the GEV the right distribution?

Answer: In a minute.

Why is the normal the right distribution for mod-
eling sample means?

Answer: The central limit theorem.
The normal is (sum-)stable.

Gamma (.5,2) Histogram of Means (n = 100)

Sample Mean /

n = 100

n — oo
sum-stable

Important: We don’t need information about the distribution
of X; to know about the distribution of the sample mean.



Why is the GEV the right distribution?

*R Demo*



Distributions of sample maxima
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Distributions of sample maxima
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T hree-types Theorem

Like a Central-Limit Theorem for maxima.

Let M, = maX;=1..,X:, Where X; are iid. If there exist nor-
malizing sequences a, and b, such that P (Mg—;bn < a:) — G(x)
(nondegenerate) as n — oo, then

G(x) = exp {— 1+ 5513]_1/5} .

¢ determines the tail behavior.
e £ < 0: Weibull (or reverse Fréchet) case (bounded tail)

e £ = 0: Gumbel case (light tail), interpreted as limit
e £ > 0: Fréchet case (heavy tail)

Important: We don’t need information about the distribution
of X; to know about the distribution of M,,.



Limiting Distributions
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Statistical Practice

Assume n is fixed and large enough so that:

P(M”_b" ga;) N exp{—[1+§az]—1/5}

QAn

= P (M, <y) ~ exps— :1+€(y_b”>]1/£}

Qn

= exp <(— :1 + & (y — M)]w},

o}

where y s.t. 1+ & (%) > 0.

For the Fort Collins precipitation data, n = 214, the number
of ‘'summer’ days in a year.

Then, we have a three-parameter estimation problem. u, o,
and £ can be estimated via (numerical) maximum likelihood,
or some method-of-moments type procedures.



Fort Collins Data Revisited

Parameters estimated by numerical ML (standard errors):

=111 (0.086)
& = 0.46 (0.074)
£ =0.31 (0.181)

e Estimate for £ is (quite) heavy-tailed.
e Notice the large standard error on &.

Point estimate for the 100-year return level: 5.8 inches

05% confidence interval for 100-year return level
via delta-method: (1.2, 10.4)
via profile-likelihood: (3.5, 18.8)



GEV and return levels

o +

GEV(x) = exp {_ [1 n: (x — M)} 1/5}

Computing the return level z, such that GEV(z,) =1 —p

Zp — GEV_1(1 — p)

Hence,| zp =1+ % ([=In(1 = p)] =% —1])




Estimation

Two widely-used methods for estimation of @ = (u, o, &)".

1. Numerical maximum likelihood
2. Probability weighted moments/L-moments

Arguments:

e Standard ML setting if £ > —.5.
o O ML properties ©.
e numerical ML can be flaky for small sample sizes.

e PWM implicitly makes assumption & < .5.



Example: Hartford wind data

Data: annual maximum wind measurements at Hartford 1944-
1983 (from ismev package).

Say we are interested in two quantities:

e P(annual max > 70).

e 100-year return level.

*R Demo*



Example: Hartford wind data

Parameter Estimates
ML:
0 =49.93,6 =5.02,£ = 0.004

PWM:
i =50.01,6 =5.24,§ = —0.043

Note: fundamental difference in estimates of &.

P(ann max > 70)
ML Pt Est: 0.019
PWM Pt Est: 0.015

Return Level Pt Est
ML Pt Est: 73.23
PWM Pt Est: 72.02



Uncertainty quantification: ML estimation

Aim: Provide uncertainty information about the parameter
estimates.

The hessian of the likelihood surface can be numerically es-
tiimated at the maximum likelihood estimate. Invert to esti-

mate empirical information matrix.

Hartford Wind 95% CI's
u: (48.21, 51.66)
o. (3.77, 6.26)
¢: (-0.19, 0.20)

Notes:

e parameter uncertainty can be done for PWM's, too.
e £ Ooften found to have skewed distribution.



Uncertainty quantification: 100 year Rtn Level

Parameters not very interpretable. Better to provide uncer-
tainty about a meaningful quantity e.g. 100-year return level.

Two methods:
1. Delta-method (relies on asymptotic normality)

2. Profile likelihood

*RDemo*



Uncertainty quantification: 100 year Rtn Level

Parameters not very interpretable. Better to provide uncer-
tainty about a meaningful quantity e.g. 100-year return level.

1. Delta-method: (667, 965) Note: error on handouts
2. Profile likelihood: (66.7, 96.5)
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~145
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Return Level



Simulation Study

Simulate 50 ‘years’ of 100 obs, estimate GEV, & 100-yr RL.

<
o

Coverage rate of 95% CI for 100-year RL: 0.93



Take-away messages from Part I

1. To estimate the tail, EVT uses only extreme observations.
2. The distribution of (renormalized) sample maxima con-
verges to a max-stable distribution.
3. The three types of max-stable distributions are covered by
the GEV distribution.
4. One approach to fitting extremes:
(a) Choose a block length, extract data.
(b) Fit a GEV (u and o are related to this block length).
(c) Make inference, accounting for uncertainty.
(d) End up modeling the distribution of the block (e.g.,
annual) maximum.
5. Tail parameter ¢ is extremely important. Unfortunately, &
IS also very hard to estimate.

6. Not Gaussian!

Q: Is using only the block maxima wasteful of data?



GEV only approximates distn of block maximum

Let {X;} be an iid sequence of Exponential(1) RVs. Consider
Moo = max(Xz, ..., X100).

Correct distribution:
P(Mioo < z) = [P(X; < 2)]'° = [1 — exp(—2)]'?°.

Futgoo(2) = 100 [1 — exp(—z)]°° * exp(—zx).
100-‘year’ return level: = 9.205
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0.1

0.0




example : maxima of normally distributed random variables

Home work simulation

m Generated random sample of length 100 from standard normal
distribution and obtain maximum value (Repeated 40,000 times)

m Fit GEV distribution to sample of 40000 maxima
m Check if the estimate of ¢ is around —0.1 but not zero
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Penultimate approximation

Theory by Fisher and Tippett (1928)

For infinite block sizes, maxima of Gaussian belong to the Gumbel galaxy,
but for finite samples sizes the estimated shape parameters belong to the
Weibull galaxy (Von Mises conditions)

En = hazar1d’ @) with hazard(x) = % and F(x) =1 — F(x)

Back to the Gaussian example

hazard(x) ~ x for large x and a, ~ /2logn

Hence,

En ~ 1 and 1 ~ —0.109

2logn 2log100
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Lessons learned from this Gaussian example

m The convergence towards max-stability can be very very slow

m The sign of the estimated shape parameter from a finite block size
should not be over-interpreted

m Theoretical results exist to explain and quantity this phenomenon



Part II: Univariate threshold-exceedance approaches

e GPD and threshold stability.
e Inference.

e [ hreshold selection.

e Temporal dependence.

e Example.



Modeling exceedances
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Generalized Pareto Distribution

_ _ the GPD is the right distribution
for threshold exceedances.

—1/¢
P<X§z\X>u>:1_<1 , €<z—u>>

(o

In practice, choose threshold w, estimate v, and &.
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Fort Collins Data Revisited

Ft. Collins Summer Precip

daily precip (in)
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GPD estimation of Fort Collins Precipitation

GEV GPD
block size = 214 days u = 0.5 inches
n =42 n = 280
n=1.11(0.09)
& = 0.46(0.07) ) = 0.39(0.04)
£ =0.31(0.18) £ =0.19(0.07)
r100 = 5.8 Iinches r100 = 6.1 Iinches

95% CI: (3.5, 18.8) 95% CI: (4.3, 10.6)

e Parameter estimates and s.e’s obtained via numerical max-
imum likelihood.

e GPD has lower standard error for &, lower estimate as well.
e GPD has narrower confidence interval.
e Have not yet discussed threshold selection procedure.



T hreshold Stability

If GPD is a limiting distribution, it must be stable. How?

Assume X is GPD above some threshold w. Consider distri-
bution of X for X > uy, where u; > wu.

P(X>z|X>u1) = PX>z|X>u,X >u)
P(X >z, X>u1 | X >u)
P(X >u1 | X > u)

a+em) "

(1+em

—1/¢
< — Ul

1 :
( : Py )

where ¢, = ¥, + &(u1 —u), and £ is unchanged.

)—1/§




T hreshold Influence

Choice of threshold can strongly influence results.
Simulation of 10000 T-distributed RV's with 4 df.

-5 0 5 10
l

randomT

-15

I I I I I I
0 2000 4000 6000 8000 10000

Index

True value of £ = 0.25.
Estimation of a high quantile:

P(T > 13.03) = 0.0001
(essentially the 100-year return level if 100 obs per year).



T hreshold Influence

Choice of threshold can strongly influence results.

Threshold 0 0.5 2 3 5 Truth
£ -.002(.010) .062(.016) .192(.048) .207(.084) .349(.224) .25

Quantile 8.41(.30) 9.46(.52) 12.42(1.59) 12.75(2.05) 13.60 (3.32) 13.03

P(T > u) 499 .322 .057 .019 .004 —

T hreshold choice involves a tradeoff between bias and vari-
ance.

If threshold is too low, bias results because we are not far
enoudgh in the tail for EVT to apply.

If threshold is too high, estimators have high variance because
there is not enough data to estimate parameters well.

Goal: find the lowest threshold « such that the tail behaves
like a GPD above u.



Mean Residual Life

Assume that above a threshold w, the distribution is GPD.

—1
| f(z—u)) .
| .
(o
Consider the mean residual life: E[X —u | X > u].

. L\ L/
E[X—u|X>u]:/+<1I€(Zw “)) dz
b

T (via integration by sub).

P(X>Z|X>u):<1

= E[X —u1 | X > uq] Yu

- for ui > wu

—_— 11_5(% —|— £(u1 — u)) — CU1 —|— d.

That is, MRL is linear function of threshold when GPD holds.



T hreshold selection: Mean residual life plots

MRL should be linear where the tail behaves like a GPD.

Select a sequence of thresholds v < ... < u,. FoOr each u;,

let X1y, ..., X, represent the observations which exceed u;.
Calculate
1 o
eMRL(w;) = — Y X — u;
N 4

and plot (u;,eMRL(u;)), i=1,...,n.



Mean residual life plots for simulated T RV’'s

Mean Excess
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2.0

1.5

Mean Excess

1.0

Thereis a bit of “art” to choosing a threshold based on MRL
plots. And this is an easy example!



T hreshold selection: Mean residual life plots

Recall: I set the threshold for the Fort Collins precipitation
data at 0.5 inches.

MRL Plots for Fort Collins Data
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T hreshold Selection for Fort Collins Data

GPD fit to Fort Collins data with different thresholds.
About Right Too Low Too High

0.5 0.05 2
230 1702 17
0.025 0.156 0.0016

0.39 (0.04) 0.178 (0.007) 0.63 (0.238)
0.19 (0.07) 0.344 (0.032) 0.241 (0.30)
9999 Qtile 4.42 (0.72) 6.02 (0.87) 4.44 (0.89)

&g 28
(@)

Again see tradeoff between bias and variance.

Note: high variance of quantile estimate due to gradient term
In delta method.



Threshold selection: Parameter plots

Assuming that X is GPD above u, recall that £ is unchanged
for higher thresholds.

Likewise, @ can be rescaled so that it should be constant:

Y, = P+ {(u1 — u) = Yy, — Eur = Yy — &u.



Threshold selection: Parameter plots

Parameter Plots for Fort Collins Data
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Again, some “art” to interpreting these plots.



Take-away messages: Part II

2. GPD is the limiting distribution for threshold exceedances,
exhibits threshold stability.

3. Threshold exceedance approaches (generally) allow the
user to retain more data than block-maximum approaches,
thereby reducing the uncertainty with parameter estimates,
and consequently with return-level estimates.

4. Threshold selection is a classic bias/variance trade-off.
Idea is to choose the threshold as low as possible such
that the asymptotic theory is well-approximated.



Part III: Other topics in Univariate Extremes

e Extremes of stationary (but not independent) sequences.
e Extremes in the non-stationary case.



Modeling exceedances
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Stationary Example

Let {Y;} be an iid sequence of RV's with cdf
Fy(z) = exp (—ﬁ) where a € [0, 1].

Let {X;} = max(aY;—1,Y:). Notice:
P(X;<z) = P(aY;-1 <z,Y; <x)

indep

= P(aYi1 < z)P(Y: < z)

a 1
- =P <_<a n 1>x> =P <_(a n 1):c>
ool )

e a introduces (positive) dependence into the sequence
e AS a — 1, extremes occur in pairs; a = 0 = iid.
e T he marginal is unit Fréchet for all a.

Q: Does dependence affect the extremes? *R Demo*



So What?

Is the GEV still right for our stationary sequence example?
If M* ~ GEV (u,0,£), then

P(M, <z) = P(M* < g)t/(etD)

= feo[- (e )
ol (+e(5)

T — o — (a -6\ ¢
oo (14e(m Ut TGt O))

So M, ~GEV (i, o, ¢&).

Whew! This is BIG NEWS! But is it true in general or just
for our example?



Extremes of Stationary Sequences

Q: Is the GEV still the limiting distribution for block maxima
of a stationary (but not independent) sequence {X;}?

A: Yes, so long as (relatively weak) mixing conditions hold.
(Leadbetter et al., 1983)

What does this mean for inference?

Block maximum approach: GEV still correct for marginal.
Since block maximum data likely have negligible dependence,
proceed as usual.

T hreshold exceedance approach: GPD is correct distribution
for the marginal. If extremes occur in clusters, estimation
affected as likelihood assumes independence of threshold ex-
ceedances.



Non-stationary Data

Central England Temperatures

o o o ©
o o . . © o o
o o
24 o . o o o o ® °%o o o S o %
° 5 o® SIS o foe) o o o o © o o@
o ° o o o o < 0% o o9 0y L
o o
e} %o ° o OO 5 oh 5 00000 o Oo% 00 o o
o
@ 9 o [o] o0 o oW ° o ° ° fo) OO o) o
=
& ® o o o
2 o © o
5
o —
+ + +
+ + + + 4
£ £ + +,+
+ + +++ + + +++ + + +++ t + SR
+ + + + ++ o N & 4 —+ t
T+ + bt + + FF L FF T H iy o T+
w | FOAr A F F +_|_++ + gt T 4 +t Tt 4
+ +++ + 4 . +

I I I ! T I I
1880 1300 1920 1540 1960 1380 2000

Q. What do you do when there is a trend or other behavior
which you want/need to capture?

A: Allow the parameters of the EVD to vary with time or
other covariates.



Non-stationary Example: England Temperature

-1/¢
P(M,(t) < 2) = exp {— [1 + () (a“’ - “(t))] } .

o(t)

Here we let: Estimates:
| a=26.17

t) = bt R
1 ‘T b = 0.0142
e O 2.04

o — .

t) = ~

= £ =-0.27

Estimated annual max temperature exceedance probabilities:

Stationary Model: P(M, > 31.5) = 0.01.

Nonstationary Model: P(M,(2007) > 31.5) = 0.10
P(M,(2030) > 31.5) = 0.13.



(P

NUCIear power Safety ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

[0 Fukushima = nuclear power safety concerns worldwide

(0 Swiss nuclear regulator asked for (re-)assessment of vulnerability of the four
nuclear plants to

high and low air temperatures

high and low river water temperatures
high winds (and tornados)

intense rainfall, snowload, lightning strikes,

earthquakes and any tsunamis are dealt with separately!

[0 Task: estimate quantiles for probabilities 10™* per year (and 10~7 for high
winds), and give their uncertainties
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(P

NUCIear power Safety ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

[0 Fukushima = nuclear power safety concerns worldwide

(0 Swiss nuclear regulator asked for (re-)assessment of vulnerability of the four
nuclear plants to

high and low air temperatures

high and low river water temperatures
high winds (and tornados)

intense rainfall, snowload, lightning strikes,

earthquakes and any tsunamis are dealt with separately!

[0 Task: estimate quantiles for probabilities 10™* per year (and 10~7 for high
winds), and give their uncertainties

based on 25 years of data or so at the plants themselves, and (at very most,
and only for comparison) 150 years of data nearby
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Swiss nuclear plants .(l ﬂ.

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

e

Leibstadt
Basel / Binningen <% A ‘
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/
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@ |
Mihieberg
i 0 15 30 60 Kilometer
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VECTOR200 © swisstopo (DV053906)
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Air temperature maxima

and minima

(P

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE
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)
And one we took ... .(l ﬂ.

EGOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

[0 Using annual maxima loses too much information

[]

Monthly maxima gives 12 (more likely ~ 6) ‘independent’ observations/year
0 Allow for seasonality/trend by fitting GEV(ju¢, o, £), with (e.g.)

M
e = o + agt + Z {Bm sin(2rmt /365) + vy, cos(2mmt/365)}
m=1
with ¢ the day on which the monthly maximum appears.

0 Choose among models with /without trend, different values of M, using AIC and
BIC, seeking a single compromise model for each variable

0 If we're unlucky, then we also need o; and (if very unlucky) &

[0 Estimates of «y are totally unrealistic with short time series: a; & 7.5° /century
for Leibstadt air temperature maxima

0 Many variables have £ < 0, so are bounded (phew!)

0 End up with ‘stable reference model’ for standard year (1998), from which we
extrapolate forward
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Data analysis .(l ﬂ.

E(;OLE POLYTECHNIQUE
FEDERALE DE LAUSANNE
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Figure 9: Seasonal 50- and 10000 year return levels (red and black, respectively) as a function of time in

1998 (left, coinciding with the reference model in Figure 7) and in 2050 (right). 95% confidence intervals from
parametric bootstrap are shown as pink and light grey bands.

[0 Fitted GEV to monthly maxima for winter/summer seasons, allowing for monthly
variation in location and (linear!) time trend

[]

Estimated shape parameter §< O implies upper bound on maximal temperature
Attempt to allow for uncertainty due to

[]

— parameter estimation

number of observations contributing to maximum (30 # oo)

— stochastic variation of future events

— changes of instrumentation (especially for winds)
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Perils of extrapolation .(l ﬂ.

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Basel, monthly maxima

TIC]
15 20 25 30 35 40
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I

5
I

1900 1920 1940 1960 1980 2000
Years

0 Back-extrapolation fails. Why should forward extrapolation succeed?
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4.4 T B e z 3 '
B T 99 = 6500 l/f
(A) Smith River Record (USGS No. 11532500) (B) ST (g99 = 6500 ms)
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4 0 : .
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Figure 2. (a) Maximum a posteriori (MAP) estimate of the LPIll mean under the ST (blue line), uST (gold line), and NS (red line) models inferred from the Smith River fitting period Q (black
line). The colored shading represents the respective 95% credible intervals of the LPIIl mean, and the black cross denotes the end of the fitting period. (b-d) Predictions of out-of-sample
density under the ST (blue line), uST (gold line), and NS (red line) models derived from the MAP parameter estimates. The black histograms represent the empirical density of the fitting
period. Notice that Figures 2c and 2d show predictions under the uST and NS models moving away from the observed density, and the 95% credible intervals are wider under the NS
and uST models relative to the ST model.
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(A) Smith River Record (USGS No. 11532500)
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Figure 8. (a) The MAP estimate of the LPIlIl mean under M (blue line), M, (gold line), and M,, (red line) shown over the full record length (black line). The colored shading represents

the respective 95% credible intervals of the the LPIIl mean. (b-d) Predictions of out-of-sample density under M, (blue line), M,, (gold line), and M, (red line) derived from the MAP

parameter estimate. The black histograms show the empirical density in the evaluation period. For the Smith River record, M, most accurately predicted the out-of-sample data, which

is reflected by B, and B, ; shown in Figure 8c.
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Our main assumptions

m Process layer : The scale and shape GPD parameters (£(x), o(x)) are
random fields and result from an unobservable latent spatial process

m Conditional independence : precipitation are independent given the GPD
parameters

Our main variable change

o(x) = exp(¢(x))



Our three levels

A) Data layer := pr(data|process, parameters) =

&y —1/&;
pro{R(xi) —u > y|R(X;) > u} = (1 + o ¢i>

B) Process layer := pr(process|parameters) :

e.g. ¢; = ao + a4 x elevation; + MVN (0, Bo exp(—B1||xk — Xj||))

Emoutains, If Xi € mountains
5plains= if x; € plains

and & = {

C) Parameters layer (priors) := pr(parameters) :
e.9. (&moutains, Eplains) Gaussian distribution with non-informative mean and
variance



Bayesian hierarchical modeling

Priors—

Priors—

ag + a1 elev
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Model selection

Baseline model D PD DiC

Model 0: ¢p=¢ 73,5955 2.0 73,597.2
§=§

Models in latitude/longitude space D Pp DiIC

Model 1: ¢ =g +¢€4 73,442.0 40.9 73,482.9

Model 2: ¢ = g +a1(msp) + €4 73,441.6 40.8 73,482.4
&=

Model 3: ¢ = g+ aq(elev) + €4 73,443.0 35.5 73,478.5
£=§

Model 4: ¢ = ag+aq(elev)+az(msp)+¢€y 73,443.7 35.0 73,478.6
£§=§

Models in climate space D Pp DIC

Model 5: ¢ = g+ €y 73,4371 30.4 73,467.5

Model 6: ¢ = g + arq(elev) + €4 73,438.8 28.3 73,467.1
£=§

Model 7: ¢ = g+ €y 73,437.5 28.8 73,466.3
5 = Smtn,éplains

Model 8: ¢ = g+ a1(elev) + €, 73,436.7 30.3 73,467.0
S = smtn,éplains

Model 9: ¢ = g+ €y 73,433.9 54.6 73,488.5
§=§+e

NOTE: Models in the climate space had better scores than models in the longitude/latitude
space. €. ~MVN(0, X), where [o];; = B.,0 exp(—B. 1 IX; — X ).
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Posterior quantiles of return levels (.025, .975)
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Pearson Type lli

Pl)= ﬂrl(p) (x;Q)"l e"p(_x/—sa)‘







Gamma-Pareto

Model (ii): Case G(v) = (V' +Vv"?) /2

Density f(x)
0.2

0.1

0.0

Figure 2. Density function corresponding to Model (6) combined with G(v)=(v"
+v*2) /2 (a special case of Model (ii) with p = 0.5), for ¢ = 1, £ = 0.5 and parame-
ters k; = 2, and k, = 2, 5, 10 (dashed-dotted, dotted, dashed black curves, respec-

tively). The solid blue curve represents a gamma density with parameters (1.4,
1.4).



Gamma-Pareto

Model (i): Case G(v) = v*
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Figure 1. Density function corresponding to Model (6) with G(v)=v*, foro =1,

¢ = 0.5 and lower tail shape parameters k = 1, 2, 5 (dashed, dotted, dashed-dotted
black curves, respectively). The case k = 1 corresponds to the exact GP density. The
solid blue curve represents a gamma density with parameters (1.4, 1.4).



Take-Away Messages Part III

e Stationary sequences
— GEV is still correct limiting distribution for most sta-
tionary sequences.
— Inference for block maximum methods unchanged.
— T hreshold exceedance approaches need to account for
clustering of exceedances.

e Extremes of nonstationary sequences can be modeled us-
iNg a regression approach on the parameters of the EVD.



Part IV: Introduction to Bivariate Extremes

1. Preliminaries
(a) What is the goal of a MV analysis?
(b) What is meant by tail dependence?
(c) What is a multivariate extreme?
(d) Separating marginal and dependence effects.

2. A Probabilistic Framework: Regular Variation
(a) Definitions and polar coordinate transformation.
(b) Point process representation and threshold exceedances.
(c) Properties of the angular measure.
(d) MV max-stable distributions.

3. Statistics
(a) Block maximum analysis.
(b) Threshold exceedance analyses.

4. Dependence Summary Metrics
5. Asymptotic Independence



Foreward: Goal of a MV Extreme Analysis

Goal: often to assess probability of falling in a risk region.
Sometimes requires extrapolation.

Keep in mind: A basic tenet of an extreme value analysis is
to only use data considered to be extreme.

y=-1x+15

Albany
60 80
| |

40

20

0 20 40 60 80 0 5 10 15

Hartford wave

Left: Annual max wind speeds at Hartford and Albany (Coles, 2001).
Right: Wave height and storm surge data (Coles, 2001).



Tail Dependence

monitor.data
arl
40 80 100
|
o)

20
|

model.output alx

A central aim of multivariate extremes is trying to find an
appropriate structure to describe tail dependence.

To assess probability of falling in risk region, we need to know
how points in the tail behave jointly.



NOT Tail Dependence: Correlation

E[(X — p)(Y — py)]
VEIX = 12)? E[(Y — py)?]

60
1

monitor.data
arl

40
1

-2 -1 0 1 2 3 20 40 60 80 100

model.output alx

5= 0.59 5= 0.83

Correlation measures ‘spread from center’, does not focus
on extremes.



A Start: Asymptotic Dependence/Independence

A random vector (X,Y) with common marginals is termed
asymptotically independent if

im P(X >u|Y >u) =0.

u—zt

Or if X has cdf Fx and Y has cdf Fy, then

u—1

To talk about tail dependence, we need to know something
about what it means to be in the tail of each component:

e have a common marginal,
e Or account for different marginals.

Asymptotic dependence/independence is a way to begin to
talk about tail dependence.



Tail Dependence of Examples

x iS an empirical measure of asymptotic dependence (Coles

et al., 1999).

Chi

But we will need more than just a summary measure of de-
pendence to model the tail-need a probabilistic framework.
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What is a Multivariate Extreme?

One Year's Observations Block Maxima
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Multivariate Extremes and Marginal Distributions

In multivariate extremes, dependence is modeled/described
after marginal effects have been accounted for.

Theory: MV distributions used in extremes are described by
first assuming a common marginal distribution, often unit
Fréchet (P(Z < z2) = exp(—z71)). Also (in theory) the marginal
distribution doesn’t really matter when describing dependence
because of “domain of attraction” results (see Resnick (1987)).

Practice: In practice, the marginal distributions do matter.
To apply MV extremal distributions, one must estimate the
marginal, and then transform to have common marginals.

Estimation: One can do the two-step process suggested
above, or in certain instances, both the marginal distributions
and dependence structure can be estimated all-at-once.

Sounds copula-like, but with different marginals and models.



Marginal-transformed Example Data
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We will need to look at these heavy-tailed scatterplots dif-
ferently than we are used to looking at scatterplots.



Example: Bivariate Logistic

T he bivariate logistic distribution is regularly varying with tail
index 1.

F(z1,20) = exp [— (zl—l/ﬁ + z;ﬂﬁ)ﬂ]

B € (0,1] controls the amount of dependence, low 3 implies
strong dependence (more on this later).

*R Demo*



Statistics: Fitting a MVEVD

Logistic Model
_ _ B
G(zl,zg) — exp [— (Zl 1/8 + 2z, Uﬂ) ]

Annual max wind speed at Hartford and Albany. *R Demo*
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Fitted Logistic Model to Wind Data

1 o1 &1 2 02 &> B
49.97 5.03 0.01 4458 4.34 0.8 0.71
(0.87) (0.64) (0.09) (0.77) (0.57) (0.11) (0.10)

Note: estimation of angular measure has been done “behind
the scenes”. Encapsulated in estimate (.

Estimation of Risk

est

P(Ml > 80 or M> > 80) = 0.0042

est

P(M; > 80 and M> > 80) = 0.00086

est

P(M; > 80)P(M> > 80) = 0.000006

There is dependence in this data. Note the difference
between the “joint” and “independent’” estimates.



Asymptotic Independence

Bivariate Normal to Fréchet Margins Example
R Demo Here



Bivariate Normal to Fréchet Margins Example
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Asymptotic Independence:
(X,Y) (with common marginals) are said to be asymptotically
independent if lim; ., P(Y > z|X >x) = 0.



Take-away messages: Part IV

e Definition of a multivariate extreme is not obvious.
e [ail dependence is different than what we usually think of
as dependence.

e Current methodology separately handles marginal effects
and dependence.

e Regular variation provides a mathematical framework—leads
to a polar decomposition.

e In regular variation framework, tail dependence is com-
pletely described by the angular measure.

e Tail dependence not summarized with correlations, we
looked at the extremal coefficient.

e Methodologies exist for both block maxima and threshold
exceedance approaches.

e Regular variation (and classical MV EVT) requires exten-
sion to describe the dependence in the asymptotic inde-
pendence case.



Take-away messages (overall)

e An extreme value analysis uses only data considered to be
extreme. Inference about the tail can be contaminated by
data that is not extreme.

e Distributions for tail modeling are justified by asymptotic
results from probability theory. These give us rationale to
extrapolate beyond the range of the data.

e One is always data poor when doing extreme value anal-
yses. Large uncertainties are intrinsic to the problem.

e [ail dependence is described very differently than depen-
dence in the central part of the distribution.



Things not Addressed

e Rates of convergence to the limiting distributions.
e Multivariate models for d > 2.

e Spatial extremes.

e Bayesian inference.


Alexis Hannart


Alexis Hannart
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