Long period return level estimates
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Introduction

* Models for the main body of a probability distribution are not
guaranteed to represent the upper tail well 2 rely on extreme
value theory

* Two general approaches

* Block maximum

* Fixed length blocks (typically a year)

* Analyze a time series of block maxima

* Leads to the Generalized Extreme Value (GEV) distribution
* Peaks over threshold

e Set a high threshold

* Analyze exceedances above the threshold, usually after de-clustering
e Leads to the Generalized Pareto distribution (GPD)



Block maximum approach

* Approach most widely used in engineering design problems

* Natural block length is a year =2 annual maxima

* Seeks to estimate a point in the upper tail of the distribution (e.g., an n-
year “return level”)

* Most work uses the Generalized Extreme Value (GEV) distribution
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Block maximum approach
 Basis for the GEV is the "Extremal Types Theorem”

Let M,, = max{X{, X,, ..., X,;} where X; are iid random
variables. If for some constants a,, > 0, b,,,

P{an(Mn - bn) < x} V_V) G (x)
for some nondegenerate G, then G is one of the three

extreme value types that comprise the GEV distribution

* This theorem has been generalized to various types of stationary
processes



Real world applications

* Note that this is a limit theorem, like the Central Limit Theorem

* Working assumption is that 1-year blocks are large enough so that
convergence to the GEV has more or less occurred

* But ... observed processes are generally not iid or even stationary

* There can be strong dependence and a strong annual cycle (e.g.,
think of stream flow in snow dominated catchments; rainfall in
monsoon regions; temperature in midlatitude continental regions)

* There may also be “surprises” in the upper tail (e.g., think of
tropical cyclones or atmospheric rivers)

* Thus the effective block length can be small, raising the question of
whether an approximation proposed in a limit theorem can be used



Real world applications

e Other distributions such as Log-Pearson Type |l and Log-Normal are also
sometimes used based on empirical assessments of the quality of the fit
to the available sample of block maxima

* For example, the Log-Pearson Type lll is used for flood frequency
analysis in the United States (e.g., USGS Bulletin 17c)



https://pubs.usgs.gov/tm/04/b05/tm4b5.pdf
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Can practitioners safely extrapolate fitted EV distributions?

* Most engineering analyses use the block maximum approach

* Very often assume the GEV distribution
* Increasingly require ambitious extrapolation deep into the upper tail

 Example

* In Canada, wind load estimates are based on 50-year return levels for
annual maximum wind pressure, which are multiplied by a fixed "load
factor”

* Higher importance buildings use larger load factors
* The use of fixed “load factors” leads to differences in building reliability

* There is therefore a move to adopt “uniform risk” design procedures that
eliminate fixed load factors but require return level estimates for much
longer periods (up to 1000’s of years for “post disaster” buildings)



Can practitioners safely extrapolate fitted EV distributions?

* Implicitly assume that the sampling of extremes results in
convergence, and thus a stable upper tail
e Convergence to the GEV (and thus max-stable conditions) is only

occasional
 Not testab

* Analysis of t

y discussed in the practitioner literature
e with available observational records

ne CanRCM4 large ensemble of regional climate

simulations suggests we should think more deeply



CanRCM4 large ensemble

* 50-members, 50 km resolution, driven by the CanESM?2 large
ensemble

e historical + RCP8.5 forcing
* hourly precipitation archived for 35-members
e considering 1951-2000 only, we have 35x50=1750 annual maxima

GEV fitting method

* assume stationarity over 1951-2000
e fit via maximum likelihood
* results are similar if using probability weighted moments



Shape parameters of extreme 1-hour precipitation
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GEV fits to block maxima at 2 locations

Extreme quantiles
based on 1750-years
of CanRCM4 simulated
1-hour precipitation
accumulations for
1951-2000
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Is there something unusual about the 50-year sample?
(red =» rejection of x? test at 5% significance level)

50-year sample vs remaining 1700 years




GEV goodness of fit to annual maxima
(red =» rejection of x? test at 5% significance level)

50-year sample 1750-year sample




Relative bias of extreme quantile estimates
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Relative bias of extreme quantile estimates
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1000-year return level estimates vs block length
(using 1000 bootstrap samples)
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Relative bias in 1000-year return level estimates

from annual maxima
(¥ empirical vs fitted, and based on samples from the fitted distribution)
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Relative Bias in %

Relative bias in return levels
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Relative bias of extreme quantile estimates

100-year return level 1000-year return level
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Discussion

e CanRCMA4 is not the real world, but ...

* Extremes come from a mixture of processes, with the process
producing the most intense extremes dominating the far upper tail

* Note that this is well recognized in the practitioner literature (e.g., it
is explicitly discussed in the USGS Bulletin 17c), but practitioners
usually deal with this at individual locations in an ad-hoc fashion

* The reliability of these ad-hoc approaches (e.g., based on storm
classification) is unknown

* Fitting a mixture of two GEVs to the available sample of 1750 annual
maxima at our test locations replicates the variation of the shape
parameter with block length
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GEV fits to block maxima at 2 locations
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Discussion

* We should worry about tail stability and where we sample

e Sampling the annual maximum may leave us ignorant (in relative
terms) about surprises deeper in the upper tail

* Using a peaks-over-threshold approach does not solve the problem
* Extrapolation into the deep tail requires information from somewhere

* It is either constructed from basic postulates, assumed, or perhaps
can be objectively derived from further information about the
underlying physics






Can physical considerations help?

* We obviously cannot directly assess stability with a typical 50-year
sample of annual maxima ...

* Perhaps a multivariate approach can help, whereby we decompose
extreme precipitation into more than one component representing
different aspects of the underlying physical processes

* One possible decomposition is PCP=PWxPE, where

* PW is the precipitable water in the atmospheric column
* PE is the precipitation efficiency (the fraction of PW that is
precipitated during the event)

* PW is generally bounded, whereas PE can be heavy tailed, with PE >>
1 possible.



Proposal ...

* Model the joint behaviour of extreme PW and PE and then use
Monte Carlo methods to estimate the marginal distribution of PWxPE

* Options
e Heffernan and Tawn (2004) conditional dependence model
e Ben Alaya et al (2018) extreme value copula based model



Approach

1. Fit semi-empirical marginal distributions to PW and PE
* Empirical, plus Generalized Pareto in the upper tail

2. Transform the full marginal PW and PE to marginal Laplace
distributions

3. Build a dependence model for extreme values of the transformed
variables (PW, PE) by describing the conditional distributions of
extreme PWIPE and PEIPW

4. Repeatedly sample the joint extreme (PW, PE) distribution,
transform back to (PW, PE), and multiply to obtain a Monte Carlo
estimate of the distribution of extreme PCP=PW*PE



Some results
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Estimated shape parameters for extreme
6-hour precipitation at two locations
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Relative bias in 1000-year return level estimates

Compound Approach Univariate Approach Univariate Approach
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Relative RMSE in 1000-year return level estimates

Compound Approach Univariate Approach Univariate Approach
(50-year sample of precip components (50-year sample of annual maxima) (1750-year sample of annual maxima)

T




Conclusions
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Conclusions

* Traditional univariate analysis OSHAWA WPGP, ON 6155878

assumes a stable upper tail Duration/Durée : 24 h
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Conclusions

* It is therefore necessary to better use information available in the
historical record

* One option is to extract information from the constituent variables
that produce univariate extremes

* We illustrated this approach by decomposing precipitation as the
product of precipitable water and precipitation efficiency

* The “compound events” extremal dependence model appears to be
able to capture fluctuations in tail shape that result from physical
relationships between the component variables.

* Bias is, consequently, considerably reduced, even when using a
modestly short 50-year sample.

* Note that additional information that allows this to happen comes
from PW



Problem is not limited to extreme precipitation

* We see similar issues with extreme wind speed

* Fitting GEV distributions to annual maxima of model simulated
“instantaneous” wind speed tends to find bounded distributions

* Leads to negative bias in long-return period extreme wind speed
estimates

* Engineers use extreme wind pressures = substantially under-
estimated extreme wind loads



2500 years (50 simulations, 1951-2000)
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1000-year RL {m/s)

Bias vs block length for estimated 1000-year extreme windspeed
based on GEV fits to block maxima
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