Lecture 1

Compound weather and climate events:

What are they? Why do we care?

Bart van den Hurk (Deltares)

with contributions from
Jakob Zscheischler,
Emanuele Bevacqua and
Mercè Casas i Prat

A "typical univariate" extreme event

In 2012, a flash flooding in Krymsk (Russia) killed more than 170 people due to an unprecedented amount of rain.

But not all flooding are "univariate", many are caused by a combination of hazards/drivers.

slide from EB

Compound flooding in Ravenna (Italy)

On 6th Feb 2015, along Ravenna's coast, river discharges were partially obstructed from draining into the sea by the storm surge, causing a compound flooding (**CF**).

Near-flooding event 2012: a compound event

Computing infrastructure requirements

What about correlation characteristics between drivers?

The concept of compound events

highest 10%

storm

← All precipitation events →

The concept of compound events

highest 10%

storm

← All precipitation events →

Analysis of compound events

- A regional climate model (RACMO2)
 - @12km
 - 1950 2000, 16 members = 800 yrs
 - precipitation averaged over target domain
 - storm surge derived from wind + astronomical tide
- Local precipitation observations
 - for statistical bias correction
- Hydrological model of Noorderzijlvest water system
 - including water management
 - to generate time series of inland water level

Compounding occurrence of storm surge and intense precipitation

Local water level at Lauwersmeer

The concept of risk

Compound events

nature climate change Compound weather/climate events refer to the *combination* of *multiple* drivers and/or hazards that contributes to societal or environmental *risk*.

Future climate risk from compound events

Jakob Zscheischler¹*, Seth Westra², Bart J. J. M. van den Hurk^{3,4}, Sonia I. Seneviratne¹, Philip J. Ward⁴, Andy Pitman⁵, Amir AghaKouchak⁶, David N. Bresch^{7,8}, Michael Leonard¹, Thomas Wahl⁹ and Xuebin Zhang¹⁰

Floods, wildfires, heatwaves and droughts often result from a combination of interacting physical processes across multiple spatial and temporal scales. The combination of processes (climate drivers and hazards) leading to a significant impact is referred to as a 'compound event'. Traditional risk assessment methods typically only consider one driver and/or hazard at a time, potentially leading to underestimation of risk, as the processes that cause extreme events often interact and are spatially and/or temporally dependent. Here we show how a better understanding of compound events may improve projections of potential high-impact events, and can provide a bridge between climate scientists, engineers, social scientists, impact modellers and decision-makers, who need to work closely together to understand these complex events.

Zscheischler et al, NCC 2018

Impact varies with combination of drivers

Examples

- Drought
- Heat stress
- > Fire risk
- Coastal flooding
- Concurrent phenomena

- Precipitation, evapotranspiration, historic evolution of soil moisture, temperature
- > Diurnal cycle of temperature, humidity
- Temperature, precipitation, relative humidity, wind, lightning
- > Storm surge, precipitation, discharge
- wind, precipitation, temperature, air pollution, ...

Elements of a compound event

Slide from JZ

Four types of compound events

- Preconditioning
- Concurrent events
- 3. Temporally compounding
- 4. Spatially compounding

slide from JZ

1. Preconditioning

slide from JZ

"False" spring

Regularly causing large-scale damage to natural vegetation and crops in temperate regions.

Warm late winter: creates precondition

Frost in early spring: hazard

Damaged sugar maple trees

Slide from JZ

Rain on snow events

Important floodproducing events in the high latitudes and mountainous areas.

Snow-covered surface: *precondition*

Rain: hazard

2. Concurrent events

Compound flooding

Common driver: storms, tropical cyclones, atmospheric rivers, etc.

See 2nd lecture on CE's (Thursday)

Various types of dependence

Correlation is highly variable in space

slide from JZ

Separate the drivers – Compositing

Events at Devonport, UK

Drought-heat feedbacks

Combined high temperature-low precipitation

 Correlation between summer temperature and precipitation (CMIP5)

Zscheischler & Seneviratne, Science Advances (2017)

Change in dependence

> Change in correlation 1870-1969 and 2001-2100 (RCP8.5)

slide from JZ

Likelihood of concurrent hot and dry summers

How much more likely is the combination of 10% highest temperature and 10% lowest precipitation?

3. Temporally compounding

Sequence of heatwaves

Cluster of tropical cyclones

Katia, Irma, Jose in 2017

Precipitation clustering and lake flooding

4. Spatially compounding

Global Famine 1876-78

Estimated fatalities: > 50.000.000

Concurrent impacts of El Niño on crop yields

Conclusions

- Many events have compounding drivers
- Impacts are important starting point for compound event definition

 Typology of compound events exist, each requiring a specific analysis method

Thank you

