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What causes extreme impacts?

> Generally very difficult to determine
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What causes extreme impacts?

> Generally very difficult to determine
> Typically multiple causes — what are the most important ones?
> Requires “backward assessment” / "bottom-up assessment”

> Very common in vulnerability assessment, e.g. when analyzing
causes of individual disasters (“poor man’s analysis”)

> But: difficult to generalize from individual events
> how to derive general relationships?



Forward and backward assessment

Drivers Responses

Forward assessment
Detect Analyze
extremes impacts

Zscheischler (2014) PhD thesis



Applicable methods

> Variable selection

Compositing/Superposed Epoch Analysis (SEA)
Classification
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Factorial model simulations

Backward assessment
Analyze Detect
causes extremes
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Impact varies with
combination of drivers

Climate driver 2

e.g. human
heat stress

>

Climate driver 1



Extreme drivers vs. extreme impacts
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Examples

> Climate drivers of the 2016 vyield failure in France



Yield anomalies in France




Climate conditions in 2016

Monthly averages
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Logistic regression
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logit(p;) = Bo + B1xi + Box; +

Selected best predictor variables:

1) #days with Tmax between 0
and 10°C in December

2) November precipitation

3) Minimum June temperature

4) AMJ] precipitation

5) Interaction between 1) and 3)
6) Interaction between 3) and 4)



Examples

> Climate drivers of the 2016 yield failure in France
> Drivers behind disasters



Bottom-up assessment of disasters

Non-disaster
ars

Droughts (n=590)

Heat waves (n=150)
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Tschumi & Zscheischler (in press) Climatic Change



Relevance of vulnherability

Droughts
> Climate anomalies during disaster 8 o —
years are larger in developed countries § .7 | : | e————
g : *
5 g *
Developed (n=66) Developing (n=517)
_ _ _ _ _ Heat waves
» Climate anomalies in rich countries g - ¥ ST e
need to be very large to cause a [ : o
disaster : 0 : | :
| Developed (n=88) Developing (n=62)

Tschumi & Zscheischler (2019) Climatic Change



Examples

> Climate drivers of the 2016 vyield failure in France
> Drivers behind disasters
> Drivers of the 2010 Russian heatwave



Factorial model simulations
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Examples

> Climate drivers of the 2016 yield failure in France
> Drivers behind disasters

> Drivers of the 2010 Russian heatwave

> Coastal flood impacts (see next lecture)



Thank you

Bart.vandenHurk@deltares.nl
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slide from EB

The scientific attention

Observed water levels
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slide from EB

Hydrological mechanisms causing CF

River confluences

@ Germany, 2013. In Passau, from high discharges into the confluence
of the rivers Danube, Inn and llz. [Wahl, 2018; Blschl, 2013]

e ltaly, 2014. Between the river Parma and the Po: "the rain over the
Parma basin was only justifying a moderate river level but...”



slide from EB

Hydrological mechanisms causing CF

Coastal Compound Flooding: Different weather/climate and
topography can lead to different flooding mechanisms: [Wabhl et al., 2015;
Bevacqua et al., 2019]:

@ In estuaries where river
runoff and sea level may
combine initiating or
exacerbating flooding
(e.g., due to a moderate
storm surge)




slide from EB

Hydrological mechanisms causing CF

River confluences near to the coast

1.!'9::

Combination of the previous two main mechanisms [Bevacqua et al., 2017].

Hydrologically non-interacting concurring extremes (Spatially

compounding events)
The impacts resulting from concurrent flooding may combine non-linearly (e.g., if
rescue teams are overloaded [Barton et al., 2016] [Martius et al., 2016]).
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Data of the contributing variables to the CF

@ Observations, often
limited.
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[CF in river estuaries: Ward et al., 2018]
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How to quantify the actual CF water level?

(Sea level, Pluvial/fluvial flooding) — CF water level

@ Explicit modelling of the CF water level: Combining sea and
pluvial /fluvial levels via: hydrodynamical or statistical models.

Computing infrastructure
requirements

= ! T P

@ Considering the probability of potential CF.

Statistics of time
evolution of internal
water fluctuations at
short and long time
scales
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slide from EB

Statistical modelling of the CF - Ravenna (Italy)

Multivariate stat. downscaling

5-Dim

(PCCs):

\\‘sz h ,/ (Xa3. X1)ERA — (Y1, Y2, Y3)sim
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Bevacqua et al. (2017), HESS

o
¥ | —— Observed
4 —— MeanPredicted

o 95% Prediction Interval
—_ ]
£ .
L o

~ M '

o ¥ _ ‘

(CJJ T ,I

/Qq, IQN /Q,\ i r rt:\
W N YN AN W ND N2
.} LT, T . ") (%}
v i i 2 i v L



How to quantify the actual CF water level?

Potential compound flooding: if data from models or observations are

not available, bivariate return periods:

AND

@ OR considers both CF and univariate flooding.
@ AND allows for disentangling better CF.

slide from EB

1

Serinaldi, 2015



Analysing compound return periods
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Bevacqua et al. (2019) Sci. Adv.
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Intermezzo: some info on copulas

Copula

A copula is the joint distribution of random variables, U;. U, ..., U, , each of which is
marginally uniformly distributed as U(0.,1)

C(”l, Li-z, . s s 9 ”p) — P(Ul ﬁ ”—1, U2 S ”2, . s s 9 Up S Mp)

If the variables are independent

Clup, us, ..., Lt-p) = Uy XUy X ... X1,



Intermezzo: some info on copulas

Joint cumulative density function

Copulas are useful because of Sklar's Theorem:

For any p random variables with joint cumulative density function (c.d.f.)

F(x1,x3,...xp) = P(X] < x1, X5 < X9,...X) < Xp)
and marginal c.d.f.s

Fi(x)=PX;<x)j=12,...,p

there exists a copula such that

F(x1,%2,...,xp) = C{F1(x1), F2(x2),..., F,(xp)}

This allows us to separate the modeling of the marginal distributions
from the dependence structure, which is expressed by the copula.

slide from MCiP



slide from MCiP

Intermezzo: some info on copulas

Joint probability density function

For any p random variables with joint cumulative density function (c.d.f.)

Jx, %, . .0,x) = fi(x)hH(x) - -f(p(xp) :
c{F,(x)), F5(x,), ... ,Fp(xp)}

The pdf of the copula distribution can be seen as the
adjustment needed to convert the independence pdf into the joint pdf
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Intermezzo: some info on copulas

Classes of copulas

I Copulas l
l |
B v
Elliptical I l Archimedean } Others
| I ! }
Gaussian Student-t | Gumbel Clayton Frank

(J. Li, 2015)
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Intermezzo: some info on copulas

Elliptical copulas Archimedean copula
Gaussian copula Student-t copula Gumbel
If the joint c.d.f is a multivariate normal If the joint c.d.f is a multivariate t- P 0:1/0
distribution, then the copula is Gaussian  distribution, then the copula is Student-t C(uh u2) = eXp( — [(—ln Ml) + (—ln M2) ] )
o~ Right tail dependence
2
1 0-1
o T =—
- >0 o
il -
i -2
) -1 0 1 2
Zero tail dependence Upper and lower tail dependence X
Classes of copulas Clayton
C _ 0 -0 _ 1 -1/ 0> 1
Frank —o0 <6< o Joe 0>1 (uy, up) = ()" + () )
0 7
T=— o 4
0+2
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Symmetric copula with a wide Stronger right tail dependence
range of dependence parameter,
can include negative correlation



Configuration of compound coastal flood events

B Storm surge & non-extreme precipitation C Extreme precipitation & no storm surge
T s S |

Bevacqua et al. (2019) Sci. Adv.



1/yr 1d precipitation and storm surge (ERA-int)

(A) 1-year return level of precipitation (B) 1-year return level of sea level
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Bevacqua et al. (2019) Sci. Adv.



Return time of 1/yr combined precipitation and
storm surge

CF probability (1980—-2014)
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Bevacqua et al. (2019) Sci. Adv.



Return time of 1/yr combined precipitation and
storm surge — climate change

(G) Minimum Models
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Effect of change in compound structure

A Dependence-driven CF probability change B Sea-driven CF probability change C Precipitation-driven CF probability change
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Present-day CF and storm tracks

(a) CF probability (1980-2014)

@ No CF around the equator
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(b) Track density of extratropical cyclones (c) Track density of tropical cyclones
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Summary of the processes causing concurring Pe; and Se:

Are there
cyclones?

Do
cyclones
drive Pext?

Does
the same

cyclone type
drive P=< and

Sext?

No

No CF

(Mo co-occurring
PBIt and Su‘:la.‘t]

(a) CF probability {1980-2014)
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E research: compound events may "emerge” in the future

@ The compound nature of an
hazard might "emerge” in
the future due to climate
change, which can modify the
multivariate distribution of the

actual drivers of an hazard
(Bevacqua, 2018).
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Extreme sea level rise

>

Sea level rise may reduce return
time of extremes considerably

Example
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Memory effects for combined river/surge
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Memory effects for combined river/surge

Soil moisture
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Memory effects for combined river/surge

Soil moisture
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Memory effects for combined river/surge
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Thank you

Bart.vandenHurk@deltares.nl



