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Overview

Observed changes at the global and
regional scales

Understanding the causes
Projected future changes
Linking to applications

Focus on the concepts of methods rather
than detailed/rigorous math/stats
treatment
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PART I

WHAT AND HOW DO WE KNOW




Some basics: the Clausius-Clapeyron relation

« Saturation vapor pressure is a quasi-
exponentially increasing function of
temperature

eo(T) = 6.1094exp(

17.625T )
T+ 243.04

* The gross features of the general circulation
will stay the same under climate change

* As a first approximation, the distribution of
relative humidity will stay the same and
specific humidity will increase with temperature
at about 6-7%/K



Expected changes in hydrological cycle

« \Water vapor tends to increase at the Clausius-
Clapeyron rate about 6-7%/K

» P-E balances the horizontal advection of water vapor

* Global precipitation is affected by energy balance,
l.e., latent heat needs to be balanced by long wave
radiation cooling Increase that increases with
temperature at about half of C-C rate. As a
consequence, global precipitation increases with
temperature at a rate much smaller than 6-7%/K

« Extreme precipitation is more affected by the
availability of atmospheric moisture and generally
increases at the C-C rate, depending on space/time
scale

« Changes in hydrological cycle differ regionally



There are likely more land regions where the number of
heavy precipitation events has increased than where it

(a) RX1day

(d) RX5day

Non-significant incrcase @  Significant increase
Non-significant decrease @  Significant decrease

Sun et al. (2019) in preparation, see also Westra et al. (2013)
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Anthropogenic influences have contributed to
intensification of heavy precipitation over land regions
where data are sufficient (IPCC AR5 SPM)
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Zhang et al., 2013 (see also Min et al 2011)


http://onlinelibrary.wiley.com/doi/10.1002/grl.51010/full
http://www.nature.com/nature/journal/v470/n7334/full/nature09763.html

Extreme precipitation events over most of the mid-latitude
land masses and over wet tropical regions will very likely
become more intense and more frequent (IPCC AR5 SPM)

Multi-model median risk ratio for 20-yr (P20) and 50-yr (P50) daily precipitation events in
current climate (global warming at 1.0°C) at 1.5°C (left) and 2°C (right) global warming.

Kharin et al. 2019



Mann-Kendall test for trend



Mann-Kendall test

The Mann—Kendall test (Mann 1945: Kendall 1955)
is a nonparametric test for randomness against trend.
According to Mann the null hypothesis of randomness
H, states that the data (¥,. ¥,. ... . Y,) are a sample
of n independent and identically distributed random var-
1ables. The test statistic S is defined as

n—1 n
S=> > se¥, — L), (A1)
=1 j=k+1
where
1 ifx = 0.
sgn(x) = 10 ifx = 0. (A2)
—1 1ifx < 0.

Nonparametric test,
distribution free

The distribution of S under H, is symmetrical and is
normal in the limit as » — %. Under H,. the mean of
S 1s zero and. in case of no ties (e.g.. no multiple values
for the same sampling time). the variance of S is given by

Vi=nm — 1)2n + 5)/18. (A3)

A two-sided test for trend is then performed by com-
paring the following Z statistic:

(S — 1)/V, ifS=>0
Z=10 if S =0 (A4)
(S + 1)/V, ifS <o,

with the critical value Z_, where F), (Z,,) = a/2. Fy
being the standard normal cumulative distribution func-
tion and «a being the significance level for the test
(Hirsch et al. 1982). The H, should be accepted if |Z]
= Z.». A positive value of Z indicates an increasing
trend. and a negative one a decreasing trend.

Wang and Swall
2001, J. Climate



Assumption about the residuals:
I.1.d.
A sequence or other collection of random variables is
independent and identically distributed (i.i.d.) if each

has the same probability distribution as the others and all
are mutually independent.

I.1.d. is very common in statistics: observations in a
sample are USUALLY assumed to be (more-or-less) i.i.d.
for the purposes of statistical inference.

The requirement that observations be i.i.d. tends to
simplify the underlying mathematics of many statistical
methods. However, in practical applications this is most
often not realistic.

We need to pay particular attention on this issue in
almost all hypothesis tests



Von Storch and
Navarra 1995

e e b e e e e e

!
U o i oy o e o o o e o i i s ey oy S s, o =

P e e e e e e e e

N2> T F 5 K
|||||||||||||||||||||||

P e e e e e
A

AT AS AV VAT ALY YA - -
e e e il e R i =]
IS I O S I 3 O G S G @3 1o G o Deme eI /I 5 TS G

Serial correlation

Rejection Rates of Mann-Kendall Test
For Serially Correlated Data; Risk 5%

(AR(1)-process with specified alpha)

unfiltered data

VP . . . . — - - - - .
B o e e e e e s e ) A ke’ o
et v
Byr— — e e e e S TR

PV | | S | S, S | i | — -
N e e — W
R o o o e o o e e o e e e
A AT A waw i wawaswaw auwas

B ey et e e e ey ey

T D I 60 Gy G e e e b e G B et o
TS T w— —— - -

VAT A o o s A -
R il Y Yty ey
Ve e, e o wmm o e

ACATAvavavawas awa
= e e e e e o =

AT e oo i e v v e

=c] B,

0.8

0.4
5%
¥

40

10 .20 .30

.00



Treating serial correlation

Pre-whitening: removal of serial correlation

Estimate the proper number of degree of
freedom

Estimate uncertainty empirically using
Block-bootstrap

Generalized linear regression to explicitly
consider autocorrelation.



Prewhitening: y(i+1)-alpha*y(i)

Rejection Rates after Prewhitening
with Estimated alpha.
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Effective sample size

» Effective time 1 between independent
samples can be estimated for
autoregressive process

« Effective sample size n = NAU/r

* Use nin place of N to compute test
statistic/critical value



Block bootstrap

* Produce many series that do not have the
property (e.g. trend) to be tested by resampling
the original series

« Keep the serial correlation in the resampled data
by resampling the data block by block

« Compute the statistics in the resampled data to
come up with the critical values of the test
statistic

1|2(2]4|5[6|7|8)010)1112

[z 3]als]elolio]i1]7]a a|10f

FIGURE 510 Schematic illustration of the moving-block bootstrap, Beginning with a time series of
length i = 12 (above), # = 3 blocks of length L =4 are drawn with replacement. The resulting time
series (below) is one of {0 — L+ 1" = 729 equally likely bootstrap samples. From Wilks (1997h).



Trend estimation



Linear trends

« Simple, frequent and widespread use
« Strength and weakness well known

Y; = a+ bt; + ¢



LINEAR TREND: LEAST
SQUARE FIT

. B _ SXY A _ = B-
* Least square estimates: =< ,a=y-bt
SXX

« T-test for the statistical significance of the trend
o Test statistic:

UE/ \/ Sxx

Sxx = Z(t £)%, Syy = Z(Yx ¥)?,

SSe—SYY bSyy, 62 = SSS/(n 2)

t= ~t(n—2),

* (Gaussian assumption for the residual!



Linear trend: Sen’s slope

estimator

Without loss of generality we assume that f, =, =
- = ¢, are the sampling times which are not all equal.
And let

N = Z sgn(t; — t,). (AS5)

I=i<j=n
where sgn(x) i1s as defined in (A2). Then. among all

values of (£, — #,). 1 =i = j = n, only N values are
nonzero. We now consider the set ® of NV distinct pairs
(i, j) for which ¢, > ¢,. and define

X, =G -Y)t—1). GHeR (A

We then arrange the N values in (A6) in ascending order
of magnitude and denote the Ath smallest value by X,
(k= 1.2.....N). Thus. the estimator of » based on
Kendall’s rank correlation is given by

(A7)

Xy + Xyna1)/2 1f Nis even.

Let N* = Z ,Vs.and M; = (N — N¥)2 and M, = (N
+ N*)/2. Then (X,,. X,,,,,) gives the (1 — a) confidence
interval of estimator b.

. [XQ.DM if NV is odd.

Wang and Swall
2001, J. Climate



Nonstationary extreme value models



GEV

G(y)
Cexp{ —exp[1— (v — w)/ol} £ =0,(EV —1)

exp{ — [1 =&y —w)/o]*¢}, € >0,y < u+0a/E(EV —1II)

Lexp{ — [1 =&y —w)/o]"*},¢ <Oy 2 pu—0o/S(EV — 1)

A

EV-I, Gumble distribution
EV-II, Frechet type | distribution
EV-IIl, Weibul type distribution

10/30/19 Page 22



Non-stationary GEV

H=a+px

Co-variates in GEV
o-variates in log( O') — 94 0:x;

Can be used for trend calculation

10/30/19 Page 23



Estimation and testing

Maximum likelihood method

GEV

i=1 ol
Lo $) = 1 <exp{— [1+f<yi ”>

o

1 - 1y
&l k=1 k) ¢
o oo (2] )

Nested models to determine predictors
_ 1 0 2
Likelihood ratio test T=2(1"—-101")~ Aq

10/30/19 Page 24



Multiple testing and field
significance



What if trends significant only in
some places ...

Summer

* Trends usually estimated for
multiple locations, thus a
multiple tests problem

* Is the trend significant
globally?

45
35
25
15
5
-5
-15
25
-35

Fig. 13 Trends in precipitation totals from 1950-1998. Units are percent change over the 49-year
period. Grid squares with trends statistically significant at 5% are marked by crosses.

Zhang et al. 2000



Concepts of type | and type Il errors

* Type | error
* Reject H, while it is rislytoty Foboy syl

function of the null the distribution of the test

t rue distribution statistic if a specific H, s true
 Significance level \

e Type ll
ype Il error V%

* Failure to reject H,
When it iS false Crmcjl;;—— Rejection Region ———————>

FIGURE 5.1 Ilustration of the relationship of the rejection level, e corresponding to the probability
of a Type I error (horizontal hatching); and the probability of a Type II error, B (vertical hatching);
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Test of a hypothesis

* Null hypothesis H,
* Alternative hypothesis H,

 Two outcomes of a test

* Reject H,: we have strong evidence that H, is false
(but does not imply acceptance of H,)

* Failure to reject H,: evidence in the sample not

inconsistent with H, (but does not imply acceptance
of H,)

* Only consider the case without H,



Multiple testing

* At multiple locations
* On multiple variables of the same system

 False rejection with a predefined probability (at the
significance level) for each test=» more tests mean
more possible passed tests by chance

* Local significance and global (field) significance

« Example based on Livezey and Chen (1983),
methods applicable to trend estimate



700

CORRELATION BETWEEN JJA SOl & DJF 700 MB HEIGHT
Chen 1981



700 hPa heiht nd hoise

CORRELATION BETWEEN NOISE AND DJF 700 MB HEIGHT

Livezey and Chen 1983



Global significance: independent tests

» False rejection expected by chance (at p probability)

» Probability of x out of N falsely passed tests follow a binomial
distribution

B.={X=x}= (]i)px(l —p)N*x=01,..,N

N!
(Ia\c’) T X (N —x)!

« With a limited number of tests, false rejection rate is greater than the
nominal rate defined by the local significance

* How many rejections are needed to claim a global significance?
» The significance levels for local and global may differ



Probability of exact M over 30 passed tests

M

percentage
(M/30%100)

Y

0.0%

0.215

3.3%

0.339

6.6%

0.259

10%

0.127

\

3.3%

0.045

| | WO DN

\

6.6%

0.012

ROBERT E. LIVEZEY AND W. Y. CHEN
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FIG. 3. Estimated percent of independent 95% (p = 0.05) significance tests passed
that will be equalled or exceeded by accident 5% (P = 0.05) of the time versus the
number of independent tests N (labeled “DOF” for “degrees of freedom™). The
curve is based on the binomial distribution. The plotted point and coordinate lines
and points refer to the significance test of Chen’s experiment described in the text.



Global significance

» At p=0.05, there could be 14.1% or more
passed tests in 30 tests

 Or one needs to obtain more than 14.1%

passed test to claim global significance at the
5% level

* [t takes more than 1000 independent tests In
order for the proportion of passed tests close to
(but still slightly higher than) the nominal level



Multiple tests: non-
independent

« Multiple tests are very often not independent

» Estimate the proper number of degrees of
freedom, use the results for the independent
tests

 Monte-Carlo simulation



Estimate DoF

ROBERT E. LIVEZEY AND W. Y. CHEN
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F1G. 3. Estimated percent of independent 95% (p = 0.05) significance tests passed
that will be equalled or exceeded by accident 5% (P = 0.05) of the time versus the
number of independent tests N (labeled “DOF™ for ‘“‘degrees of freedom™). The
curve is based on the binomial distribution. The plotted point and coordinate lines
and points refer to the significance test of Chen’s experiment described in the text.



M-C simulation, more details

« Repeatedly generate random variables to mimic the
SOl index
 Random noise
« Block Bootstrap to consider serial correlation
* AR process

« Compute the correlation between 700 hPa height and
the generated “soi” indices, and fraction that locally
significant correlation has been detected

* The fraction corresponding to the pre-defined global
significance level is the threshold value with which the
correlation with real SOl should be compared



There are likely more land regions where the number
of heavy precipitation events has increased than
where it has decreased (IPCC AR5 SPM) ---

How do we know?

--- A worked example



Data collection and consideration

 Data collection
» Consideration of data quality and homogeneity
* Missing values



Selection of methods

« Mann-Kendall test for statistical significance of
trends

« Bootstrap to determine field significance
« GEV fit to determine prcp sensitivity



What we have learnt

No significant trends in
most stations
Percentage of stations
with statistically
significance increase
trend larger than
expected by chance
Percentage of stations
with statistically
significance decrease
trend is not different
from that by chance
Conclusion: 1) Difficult
to detect a trend at
individual locations; 2)
Evidence of heavy
precipitation
intensification at the
global scale

. (a)RXIday

(b) RX1day
Significant increase

(c) RX1day
Significant increase
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* (d) RXSday

(e) RX5day

Significant decrease

Non-significant increase @  Significant increase
Non-significant decrease @  Significant decrease

(f) RX5day

2 4 6 8 10
Percentage of stations (%)

Significant decrease

12



Is there an association between annual maximum 1-
day precipitation and global mean temperature?
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Sun et al. 2019 in preparation



