
CHANGES IN EXTREME PRECIPITATION

Xuebin Zhang, Climate Research Division 



Understanding the causes



Climate Change Detection and Attribution

• Objectives:
Ø diagnosing the existence of forced changes in the observed 

climate record and 
Ø assessing the roles of various possible contributors to those 

observed changes
• Scientific and policy relevance: 

Ø Comprehensive evaluation of our understanding of how the 
climate system responds to anthropogenic interference

Ø Dedicated chapter in every IPCC assessment report 
Ø Underpinning several high-level findings of the AR5 
Ø Underpinning attribution assessment across a range of variables 

and regions 
Ø Constraining near-term projection
Ø Constraining climate system parameters including Transient 

Climate Response (TCR) and the Transient Climate Response to 
Emissions (TCRE)



Some definitions
• Detection of change is the process of demonstrating 

that the climate or a system affected by the climate 
has changed in some defined statistical sense 

• Attribution is the process of evaluating the relative 
contributions of multiple causal factors to a change 
or event with an assignment of  statistical confidence

• Casual factors refer to external influences
– Climate: anthropogenic and/or natural
– Systems affect by climate: climate change 

IPCC Good Practice Guidance Paper on Detection and Attribution, 2010

https://www.ipcc-wg1.unibe.ch/guidancepaper/IPCC_D&A_GoodPracticeGuidancePaper.pdf


Four core elements
1. Observations of climate indicators
2. An estimate of external forcing

–how external drivers of climate change have evolved 
before and during the period under investigation

–e.g., GHG and solar radiation
3. A quantitative physically-based understanding of 

how external forcing might affect these climate 
indicators.
–normally encapsulated in a physically-based model

4. An estimate of climate internal variability
–often, but not always, derived from a physically-based 

model

IPCC WG1 AR5 Chapter 10



General assumptions
• Key forcings have been identified
• Signals are additive
• Noise is additive
• The large-scale patterns of response are 

correctly simulated by climate models
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http://www.nature.com/nature/journal/v407/n6804/full/407571a0.html


Detection and attribution
• Standard D&A paradigm involves 3 equations:

! = Y!"#$%& + !!
Observed change –

!! = X!!"#$%& + !! !
Simulated (multi-model) change –

Y!"#$%& = !!X!!"#$%&
!

!!!
!!

Relationship between observed and simulated signals –

• Assumes residuals are Gaussian



A worked example



Zhang et al. 2013
• Transform to a probability index 

– Fit an extreme value distribution locally
– Apply probability integral transform
– Transformed values have approximately the 

uniform distribution
– Time and area averaging produces Gaussian 

values
– Could use simpler transforms

• Apply standard D&A paradigm



Some details of Zhang et al, 2013

• Variables:RX1day, RX5day, 1951-2005

• Observational data: HadEX2 (Donat et al, 2012) 
augmented with Russian station data, transformed

• Estimation of signals and natural variability: Multi-model 
signals and control runs (54 ALL runs, 14 GCMs; 34 NAT 
runs, 9 GCMs; >15K years control, 31 GCMs)

• Space-time regression: 1-D time evolution (5-year 
means, domain averaged), and 2-D space-time evolution 
(5-year means, regionally averaged, 2 regions including 
ML/TR or 3 regions including NA, EU and AS) 

• Total least squares method



PI Trends (RX1D; 1951-2005)
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detection becomes more difficult for the regions overall.
Single-signal nonoptimized analyses show essentially the
same results, indicating that nonoptimized analyses pro-
duce robust results in this case, although scaling factor esti-
mates are in general associated with larger uncertainty
bands when the signal strength is strong (e.g., ALL, ANT,
and Figure S6) than those resulting from optimal detection.

4.2. Two-Signal Optimal Fingerprint Analysis
[19] Figure 3 shows the best estimate scaling factors for

ANT and NAT in two-signal analyses of Northern
Hemisphere land in three regions (NA+EU+AS), together
with their marginal confidence intervals and joint confidence
regions. Even when separately estimating the naturally
forced signal, the anthropogenic influence is detected at the
10% significance level in both RX1day and RX5day. The
ANT scaling factors are significantly greater than zero and
consistent with one in both cases. The NAT scaling factors
are not significantly different from zero. This indicates that
the simulated ANT response is consistent with observed
changes while the simulated NAT response is not signifi-
cantly contributing to observed changes. The two-signal
analyses conducted in one or two regions (NH or ML+TR,
and supporting information Figure S13), and with ANT and
NAT simulated by the same GCMs, yield similar results
(supporting information Figure S12).

a: RX1day b: RX5day

Figure 3. Results from two-signal optimal detection ana-
lyses of extreme precipitation indices. for (a) RX1day
and (b) RX5day when using 5 year mean PI in three
(NA+EU+AS) regional averages combined with weighting
to NA, EU, and AS corresponding to areas of available data
grids. The intersections of the two error bars represent best es-
timates of the scaling factors for ANT and NAT. The 5–95%
marginal confidence intervals of the scaling factors are
displayed as error bars. The 5–95% joint confidence regions
are represented by ellipses.

Figure 2. Results from single-signal optimal detection analyses of extreme precipitation indices for (top) RX1day and (bottom)
RX5day. Best estimates (data points) and 5–95% confidence intervals (error bars) of the scaling factors are displayed for ALL,
ANT, and NAT, when using 5 year mean PI averaged over midlatitude (ML), northern tropics (TR), western Hemisphere land
(NA), western East Hemisphere land (EU), and eastern East Hemisphere land (AS), Northern Hemisphere (NH), and when using
two regional averages (ML+TR) or three regional averages (NA+EU+AS). Refer to supporting information Figure S6 for
results from nonoptimized detection analyses.

ZHANG ET AL.: HUMAN INFLUNECE ON EXTREME PRECIPITATION
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Detection results – 1951-2005

5-95% uncertainty intervals on scaling factors
1-signal analyses, 5-year regional means with 1, 2 or 3 regions 

ML – mid-latitudes, TR – tropics, NA – North America, EU – Europe, AS - Asia 
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Detection results – 1951-2005

2-signal analyses 

• Space-time (3 regions, 5 year means à 33-dim problem)

• 54 ALL runs (14 models), 34 NAT runs (9 models)
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Global scale detection and attribution
We can detect the human influence on precipitation 
extremes using formal detection and attribution methods:

• Climate models that include anthropogenic external 
forcing intensify precipitation similarly to observed

• Climate models with only natural external forcing fail 
to intensify precipitation

Attributed intensification:
• 3.3% increase over 55 years due to human effects

• uncertainty range [1.1 – 5.8]% 
• 5.2% increase per degree of warming

• uncertainty range [1.3 – 9.3]% 

Estimated waiting time for 1950’s 20-year event:
~15-yr in the early 2000’s 

Zhang et al., 2013 (see also Min et al 2011)

http://onlinelibrary.wiley.com/doi/10.1002/grl.51010/full
http://www.nature.com/nature/journal/v470/n7334/full/nature09763.html


Kharin et al. 2013



Kharin et al. 2013



Changes in the risk will not be uniform

Kharin et al 2018 

• Larger increase 
with stronger 
warming

• Larger increase 
with rarer events



PART II

WHEN THE RUBBER MEETS THE ROAD …



Substantial changes may have 
occurred but …

• Changes are difficult to estimate locally or 
regionally based on historical data
– historical estimation cannot and should not be 

extrapolated to the future in a very simple manner
• Climate model simulations are not panacea

– Lack of proper processes, still relatively low 
resolution

– Signal is still weak, a lot of data are needed to 
provide robust projection 

– Model output at local/regional scale should not be 
used literally



Impacts are local/regional, adaptation also 
requires local/regional specific projection

Wind, sea ice, sea level Wind

Short duration extreme rainfall extreme rainfall at various duration 



Stationary paradigm for infrastructure design

• Collect annual maximum (e.g., 
peak flood) data

• Fit the data to a probability 
distribution say Generalized 
Extreme Value distribution 
!(#; µ, σ, ξ) assuming i.i.d, 
using various methods such as 
MLE or L-Moment

• Infer from the fitted distribution 
the 1/,-year return value as 
!-.(1 − ,; µ, σ, ξ) 

• Use the return value as a 
design value based on 
stationarity assumption: climate 
has not changed in the past 
and will not change in the 
future



Some quotes

• Milly et al. (Science 2008)
– “Stationarity is dead: whither water 

management?”

• Lins and Cohn (AWARA, 2011)
– “Stationarity: wanted dead or alive?”

• Serinaldi and Kilsby (AWR, 2015)
– “Stationarity is undead: uncertainty dominates the 

distribution of extremes”



Stationery is dead –Milly et al. 2008 (Science)

• Stationarity assumption
– Foundational to the design of almost all existing infrastructure
– Natural systems fluctuate within an unchanging envelope of variability
– Any variable has a time-invariant probability density function (PDF) 

whose parameters can be estimated based on historical observations
– PDF for the past can represent the PDF for the future
– PDF estimation has errors which are reducible by additional 

observations, more efficient estimators etc.
• Stationarity has long been compromised 

– Human changes in the environment 
• Stationarity is dead and cannot be revived

– Substantial changes in the climate due to anthropogenic influence 
– Climate change will continue to the foreseeable future



A nonstationary paradigm

• Fit the data to nonstationary 
GEV !(#; µ(&), σ(&), ξ) using 
MLE method, where µ and ln(σ) 
can be assumed as a linear 
function of covariates such as 
time (t) 

• Infer from the fitted distribution 
the 1/--year return value as 
!./(1 − -; µ(t), σ(t), ξ), Return 
value is a function of t

• The risk of failure will not be the 
same during the designed live 
span of the structure



Inherent difficulty in the nonstationary 
paradigm: The need for extrapolation

What about 
year 2100?



HOW MUCH INFORMATION IS 
NEEDED TO CONSTRAIN 

EXTREME PRECIPITATION 
PROJECTION AT LOCAL 

SCALE?

--CHAO LI ET AL. (2018)



Estimation of temperature scaling of extreme 
precipitation: data and method

• Hourly precipitation from 35 
ensemble CanRCM runs at 
c.a. 50 km resolution for 
1950-2100 over North 
America, driving by 
CanESM2 simulations under 
rcp8.5

• Fitting generalized extreme 
value distribution to annual 
maxima with global mean 
temperature as co-variate, 
with different levels of spatial 
pooling 



• estimated from 65-year 
periods from single 
CanRCM4 runs (at 
site)

• At site analysis of 
single 65-year records 
is insufficient to identify 
temperature scaling 
relationships (or more 
generally

• It is insufficient to 
reliably quantify non-
stationary behaviour), 
even during periods 
with strong external 
forcing and response.

1951-2015

2036-2100

Temperature scaling of annual 
maximum 12-hour precipitation 
(at site analysis)



RFA of single 65-year 
records is still insufficient 
to robustly identify 
temperature scaling 
relationships, but …
… it may help in 
identifying large scale 
features associated with 
individual realizations of 
low frequency 
teleconnected variability.

2036-2100

1951-2015

Temperature scaling of annual 
maximum 12-hour precipitation 
(Regional Frequency Analysis)



Fraction of North America with robustly constrained 
temperature scaling estimates (annual max 12-hour precip) 

1951-2100

1951-2015

2036-2100



Strength of temperature scaling for annual maximum 12-hour 
precipitation based on 35 simulations 
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Figure 3: Extreme sub-daily precipitation response to external forcing. (a-b) Ensemble

mean of scaling rate estimates (in %/� ) for the 50th and 99th percentiles of annual maximum

12-hour precipitation based on scaling rates estimated by regional analysis with the largest spatial

pooling for 1951-2100. Hatching highlights regions where the scaling rate estimates are consistent

with the Clausius-Clapeyron relation (i.e., %5.7/� ~ %8.1/� for the central 95% range of

CanRCM4 modeled North American temperatures). To plot the hatching, the scaling rate

estimates are adjusted according to annual latitudinal mean temperatures over North America.

See Figures S6 for annual maximum precipitation of 1-hour, 6-hour, and 24-hour accumulation

durations. (c-d) Uncertainties (unitless) in the scaling rate estimates shown in (a-b) expressed as

“scaling rate per standard error”.
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- consistent with CC relation



Implications: Historical trends should not 
be extrapolated into the future

• Estimates of local scale changes based on 
available observation are highly uncertainty
Ø Historical trend cannot be extrapolated into the future
Ø Fitting GCM/RCM output to historical data will unlikely to 

produce robust future projection
• Records with lengths of many multiples of the 

length of observations are needed
• It is feasible to construct change factors based on 

relationship between regional/local changes and 
the levels of global warming 



It’s not just the change in 
precipitation intensity … 



Changes in Storm speed
Canada - Conditional Distribution

Storm speed conditioned on max. precipitation

High impact storms

From Andreas Prein



Storm rain volume – Canada

+1100 m 3/s
+60 %

1½ discharge of Ottawa river

40 %

From Andreas Prein



Some take home messages
• There is a clear evidence at the global scale of 

anthropogenic influence on extreme precipitation. 
• At the regional and local scales, changes in extreme 

precipitation are not easily identified. 
• Models project intensification of extreme precipitation 

in the future but model projections should not be used 
at its face value in many applications.

• Various statistical methods have been used to detect, 
to attribute and to project changes in extreme 
precipitation. These methods always come with 
assumptions. Understanding the assumptions are key 
to proper application of these methods.  


