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Randomness and determinism

e Isthe climate system deterministic or probabilistic ?



Randomness and determinism

0
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e Is coin tossing deterministic or probabilistic ?




Randomness and determinism

e \Whatis deterministic and what is random ?



Randomness and determinism

e \Whatis deterministic and what is random ?

e s this question nonsense ?



Flipping a coin

Figure 1.a

Figure 2: Coordinates of Precessing Coin.

>« We conclude that coin-tossing is ‘physics’, not ‘random’. »

Diaconis et al. 2007



Generating a « random » number

‘Middle-square’ algorithm

675248 <—¢2

455959861504 |3 Deterministic, nonlinear
! | dynamic system.
959861 " ‘Pseudo-random’.




Deterministic versus Probabilistic

e Everything is deterministic, randomness does not exist in the real world.

e Chaos is not randomness, it is insufficient knowledge about the initial
condition (and/or the boundary condition, and/or the dynamic).

=)
=)

Probabilities are a convenient mathematical tools to
describe deterministic systems that are insufficiently
known.

‘Probabilistic’ is not a property of a system, but a
modeling choice of the system’s observer.
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Data volume trend in climate science
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A simple story

e Exponential trend on data generation
and storage,

Petabytes (1,000 TB)
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e Matched by smart algorithms and
large computional power,
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e New applications, products, services,
and tools for science.
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The Al ‘fourth revolution’

Search Engines & Internet
Health & Genomics

Google

Astrophysics
Banking & Finance
Transport & Logistics
Marketing & Media

Energy & Distribution
Agriculture & Forestry
Urbanism




Skill trend in image recognition

ImageNet challenge
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Applied Statistics and Machine learning

Applied
Statistics
Deep learning

Machine learning

Machine learning is essentially a form of applied statistics:

e increased emphasis on the use of computers to statistically
estimate complicated functions,

e decreased emphasis on proving confidence intervals around these
functions.

Goodfellow [., Y. Bengio and A. Courville (2016) Deep Learning, MIT Press



Applied Statistics, Machine learning and Al

Artificial
Intelligence

Applied
Statistics
Deep learning

Machine learning

Machine learning is essentially a form of applied statistics:

e increased emphasis on the use of computers to statistically
estimate complicated functions,

e decreased emphasis on proving confidence intervals around these
functions.

Goodfellow [., Y. Bengio and A. Courville (2016) Deep Learning, MIT Press
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Applied Statistics: a swiss knife




Applied Statistics: using existing tools




Applied Statistics: designing more tools




Applied Statistics: a few useful tools

Linear Regression

Gaussian Processes | J i &o\._ __o Hidden Markov Models

-
-
*
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Extreme Value Analysis

Deep Learning o—

Causal Inference
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Basic principles

p(z|0)



Basic principles

p(z|0)

0 = argmax, log p(x | 0)



Basic principles

p(z|0)
p(0)



Basic principles




Basic principles

p(z|0)
p(0)
p(0|x)ocp(x|0).p(0)

AN

§ = argmax, p(@ | x)



Basic principles

p(z|0)



Basic principles

p(z | 0)

p(0)

p(0 | z) ocp(x|6).p(0)
f = argmax, p(6 | x)
0=E(f|x)

P

§ = argmax,. E(C(0,0%) | x)



Linear Regression

Gaussian P L B
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Deep Learning — Extreme Value Analysis

Causal Inference



Linear Regression

Gaussian Processes | - &O\Q._ __o Hidden Markov Models

Extreme Value Analysis

Causal Inference



Linear regression

y=xB+¢
p(y |z, B) = N(zB,0°I)

= (z'z) " (zy)

@)



Linear regression

Impact variable Climate variables
y=xB+c¢

p(y |z, B) = N(xB,0°T)



Observations:
Yields by crop, year
and country.
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Yield (Hectograms per Ha)
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Observations:
Yields by crop, year
and country (FAO).
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Marginal Yield Change (%)

log(yield)

= PrcTeie * I + ﬁZCTCitZ * [c + B3cPeic * I

+Irry * 1. + Ferty * 1. + Uy + Opc + Ecit
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factual

counterfactual

Maize_Historical Wheat_Historical
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Linear regression

Impact variable Climate variables
y=xB+c¢

p(y |z, B) = N(xB,0°T)
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precipitation (m3s-1)
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NS lumped model

0.8
0.6
0.4}

0.2}

0 . . N N
0O 02 04 06 08 1

NS linear model

NS distributed model

0.8

0.6

0.4

0.2

0 —— =
0O 02 04 06 038

NS linear model



Attribution

Evidencing the causal influence of external factors
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Pressure (hPa)

Conventional method for attributing trends

y=aL+v
Observations GCM patterns Coefficients
- 21
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Hasselmann 1993
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Allen and Tett 1999
Allen and Stott 2003



Pressure (hPa)

Conventional method for attributing trends

y=xf+v

|

Observations GCM patterns Coefficients
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Ribes et al. 2012

Hasselmann 1993 Hannart et al. 2014
Hegerl et al. 1996 Hannart 2016

Allen and Tett 1999 Katzfuss et al. 2017
Allen and Stott 2003 Hannart 2018b

More to come.



Linear regression model

y=xL+v

4 Var(v)=X

T = (T1,...,Tp)

Inference: projection of the data

i Ty=Tx(+ Tv

# {1 TET' =1

.6 — [:m.rz—lﬂ:)—l [mrz—ly:}




Optimal projection

raw data optimal transformation




Two steps approach

[x]

O parameter (unknown) D observation (known)

O nuisance parameter (unknown) D constant (known)



raw data optimal transformation

20 leading eigenvectors




Integrated approach

[x]

O parameter (unknown) D observation (known)

O nuisance parameter (unknown) D constant (known)

Hannart 2016



Integrated likelihood

& = argmax,co ) {logé(a) }
= (@E;'z) " (@'E;"y)

—2logf(a) = ¢ (55 +1) =0 (i) —nls +n+2)log(5* +1)
+ (+n+2)log|E,| - (5 +n+1)log|A|
+ (1§“+n+2)1ag{1+“‘+3““5;}




Reliability of the
confidence interval

MSE of the estimator
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Linear Regression

Gaussian Processes | - &O\Q._ __o Hidden Markov Models

Extreme Value Analysis

Causal Inference



Wind power generation




Context and motivation

e wind speed (Rawson wind farm): 10’ differentiated series

1 | T

0.8 N

ms-=1
o
T

differentiated time series ( = ARI(2,1) process)

_10
Time dependence structure can be reasonably well
- modelled e.g. with an autoregressive model of order 2 on the
- Some predictivity.




Context and motivation

e Idea of “upstream prediction”

» What would be the benefit of leveraging space-time dependence ?



Context and motivation

e I|dea: wind farm + “integrated forecasting network”
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T = (Tst—1)seS,7=01,..T

assumed to be a multivariate Gaussian with covariance %



T = (Tst—1)seS,7=01,..T

assumed to be a multivariate Gaussian mixture
with constant covariance X

» regularized estimate of 2




T = (Tst—1)seS,7=01,..T

7 Lo = (ms,t)ses > present

L1 = (ms,t—T)SES,Tzl,...,T > past

The prediction follows:

» E(xo|z1) =218 B=3Zw0



Correlogram of X

‘ _ ‘ non separability

time lag

‘ reflects the dynamic
of the flow

6 4 2 0 2 4 6

space lag (latitude)



Covariance regularization

Covariance reqularization: low rank representation

» 2= Var(:n) — VTATV; + A\I —— nugget

r basis functions are retained (r<<p)



Covariance regularization

Covariance reqularization: low rank representation

- 2= Var(m) — VTATV; + A\I —— nugget

r basis functions are retained (r<<p)

ad hoc wave propagation basis functions
probably exist

but use of EOFs

=)
=)



t-4 t-3

t-2

eorl

eof 2

AN
Ad CAR\N

the eigenvectors of the covariance X are dynamic maps

- eofs also exhibit wave-like moving patterns

eol 5




truth

emulator

Skill of covariance estimation

time
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Estimated weights

N 1 % N 0




Estimated weights

t-1
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t-6 t-5 t-4 t-3 t-2




Skill of prediction
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Interpolating temperature missing values

Daily temperature (SST), Aug 1-31 2010, Red Sea
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Context of this research work:

- Data challenge, Extreme Value Analysis 2019

- Co-supervision of the Msc. thesis of F. Baeriswyl, University McGill

- Results presented at Summer School « Mathematics of Climate and the Environment », CNRS / IHP.




T = (Tst—1)seS,7=01,..T

assumed to be a multivariate Gaussian with covariance %



our team

#1 best ranking: 0.0036
— Team LC2019.
— Poisson equation regularization (~ similar to ours).

#2 best ranking: 0.0044
— Team Rainbow warriors.
— Quasiseparable Gaussian process.

#3 best ranking: 0.0047
— Team BlackBox
— Deep Learning, convolutional recurrent architecture.

about 50 teams participated.



Linear Regression

Gaussian Processes | &O\Q._ _o Hidden Markov Models

Deep Learning —

Extreme Value Analysis

Causal Inference



Deep learning

ReLU function (Rectified Linear Unit)

o(u) = max(u,0)

-10.0 -7.5 -5.0 =25 0.0 2.5 5.0 7.5



Deep learning

y=0(Wgyo(Wg_10(...0 (Wix))))+e¢



Deep learning

Yy = O'(WdO'(Wd_lO'(...O'(Wl.GE)))) +e

, hidden layer 1 hidden layer 2 hidden layer 3
input laver




Deep learning

y=0(Wgo(Wy_10(...0 (Wix))))+ec=0¢p(x,W)+¢€

p(y |z, W) =N(y|o(x, W),AI)



Deep learning

y=0(Wgo(Wy_10(...0 (Wix))))+ec=0¢p(x,W)+¢€

p(y |z, W) =N(y|o(x, W),AI)

—_——

W = argmaxyy, log p(y |, W)

High dimensional optimization problem
Stochastic gradient indecent
Backpropagation (= chain rule)

Many tricks



Convolutional Autoencoder

Encoder Decoder




Hurricane attribution

8 September 2017 06.00pm GMT




Temporal plot of tropical cyclones occurrences

North Atlantic ACE Index ‘®'

1950-2017
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NOAA National Centers for Environmental Information, State of the Climate: Hurricanes and Tropical Storms for
Annual 2017, published online January 2018, retrieved on July 27, 2018 from
https://www.ncdc.noaa.gov/sotc/tropical-cyclones/201713.



Spatial plot of tropical cyclones tracks
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Individual trajectories
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Individual trajectories: dimension reduction
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Results — work in progress

Classifier evolution

1981 1986 1991 1996 2001 2006 2011 20186

e The probability of hurricanes with z>0.5 has increased by a factor 6.
e Something has changed.
e Work in progress:

— robustness check & verification on simulations

— physical interpretation of the classifier



Future projections of climate change

Global surface temperature change (° C)
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Climate models: subgrid processes




Clouds

Low level clouds: stratocumulus
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Stratocumulus response is a major part of uncertainty
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Getting around the computational wall: the Al trick

Deep learning can skillfully approximate sub-grid climate model physics harvested
from cloud-resolving simulations.

Is deep learning viable for

,/‘ sub-grid parameterization? \

Aquaplanet SPCAM testbed Possibly!

1 year for training, 1 for validation Just 3 months’ hi-res sim data

Globally diverse meteorological regimes \ is enough for a good fit!

Can the 140M outputs from
1 year of 9k Cloud Resolving Models...

(solutions of accurate radiative transfer & explicit CRM equations)

The “Cloud Brain”

y ....Be fit by a deep, fully
\ connected network?

Yes, e.g. R2 > 0.7 for mid-tropospheric

heating by convection & radiation at 8x512 nodes.

SuperParameterization

Geophysical Research Letters

Could machine learning break the convection parameterization deadlock?
P. Gentine, M. Pritchard, S. Rasp, G. Reinaudi & G. Yacalis. May 2018. e e e T systems magazine, ORNL visualization lab.

e 2 } Hou Image credits: Illustration by Tony Gold for IBM




Some encouraging early results

/\ SPCAM NNCAM

Pressure [hPa]
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Rasp et al. 2018




A promising way forward

@) CIIMA

A NEW APPROACH TO CLIMATE

CLIMATE MACHINE

We are developing the first Earth
system model that automatically
learns from diverse data sources.
Our model will exploit advances in
machine learning and data
assimilation to learn from
observations and from data
generated on demand in targeted
high-resolution simulations, for
example, of clouds or ocean
turbulence. This will allow us to
reduce and quantify uncertainties

in climate predictions.

MODELING

SCALABLE PLATFORM

We are engineering a modeling
platform that is scalable and built
for growth. For processing data
and for simulating the Earth
system, it will exploit state-of-the-
art algorithms to run on the
world’s fastest supercomputers
and on the cloud. It will be
scalable to ever finer resolution
globally, and its targeted high-
resolution simulations will provide
detailed local climate information

where needed.

OPEN HUB

We are committed to
transparency and open science
principles. Our modeling platform
is open source, and our results are
available to the public. We will
provide interfaces to our modeling
platform so that it can become
the anchor of an ecosystem of
front-end apps. These apps may
provide detailed models, for
example, of flood risks, risks of
extreme heat, crop yields, and

other climate impacts.



Understanding clouds from satellite images

Rasp et al. 2019

Gravel
Dusting of very fine clouds, little Large-scale stratiform cloud Large-scale skeletal networks of Meso-beta lines or arcs defining
evidence of self-organization features appearing in bouquets, clouds separated from other cloud  randomly interacting cells with
well separated from each other. forms.

intermediate granularity.



Understanding clouds from satellite images

Flower - User 3

Flower ‘User(z

Probability of occurence [%]
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Linear Regression

Gaussian Processes | : &O\Q._ Hidden Markov Models

Extreme Value Analysis

Causal Inference



Data Assimilation: hybrid approach stat + physical models

Observations:

multiple
sensors

State vector:

atmospheric
model

2800
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Numerical Weather Prediction requires to initialize the model
every six hours with new observations.



Outlook of Data Assimilation

Trend: expansion towards new applications, general framework
for interfacing large models and observations.

Examples:

e initialization

e reconstruction

e estimation: model parameters

Proposal:
e model evaluation




Outlook of Data Assimilation

Observations: State vector:
multiple atmospheric
sSensors model

10200

RS e
7 e

Goal: deriving the PDF of X conditional on'Y =y

high dimensional Bayesian update in a HMM



The “primitive equations” of data assimilation

Assumptions: Solution:
Hidden Markov Gaussian linear
model approximation
e Dynamic equation: e Propagation equation:

Xt—{—l — M(th Ft) + Vi X,{—Fl — MX? ,

f /
e Observational equation: P;,; =MP;M +Q

Yt = H(Xt) —+ Wi

e Update equation:

. B f
e v,and w, Gaussian error terms ‘ x; =x; + K(y: — Hx;) ‘
with covariance Q and R;

a _ (T — f
e Mis the model with F, external : = (I- KH)P;
forcing; K = P{H’(HP{H’—I—R)_l

e His the observation operator.




The likelihood is a by-product of data assimilation

Solution: By-product:
Gaussian linear PDF of
approximation observation y
e Propagation equation: e Likelihood equation:
o _ T
Xt+1 = M(xt) 1
7 ; —logp(y) =) log|3|
Pi= V(Xt+1) t=0

e Update equation:
x¢ =x{ +K(y: — Hx) i
Py = (I — KH)P{ d: =y: — HX{
K = P/H'(HP{H'+R)™ 3, =HP/H +R

1
+ ngzgldt




The likelihood is a by-product of data assimilation

e Likelihood :
T 1
—logp(y) =) _ 5 108 |3¢] + id;ﬁzt_ldt
t=0
with:
d; =y, — Hx]
1

>, =HP/H +R

=)
=)

Accounts for observational noise and inhomogeneity

Spatial-temporal-variable aggregation




50.-

45

40

35

30

25

20

164

10

Test in the forced Lorenz model

A trajectory in the state space
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dz
dt

dit

dz
dt

= o(y—x)+ A; cosb;

= pr—Yy—xz+ A;sinb;

=xy— Bz



Test in the forced Lorenz model

Model 1 (A = 40) Model 2 (A = 0)

piece of a trajectory + observations

- Which is best? (observations come from model 1)



Test in the forced Lorenz model

e Marginal likelihood of the observed trajectory is derived for both models by
assimilating observations.

25
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Test in the forced Lorenz model

The reconstruction of the correct model
Is usually slightly better than the one of
the wrong model.

5 10 15 20
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Test in the forced Lorenz model

The reconstruction of the correct model is usually slightly better than the
one of the wrong model.

Small local differences pile up into a large amount of likelihood difference
overall.

log p,/ p,

3] 10 15 20

x2 cfact. x2 fact.




e Marginal likelihood appears to be a possible metric to evaluate the ability of
a model to represent a given sequence of observations.

e Data Assimilation appears to be a reasonable solution to compute marginal
likelihood.

e Offers the advantage to synergize with existing infrastructure and expertise,
especially regarding observational error.

e Research under way:
— Experiments using larger models (ICTP AGCM, WREF)
— Implementation on real case studies.

— Theoretical and practical challenges for computing the likelihood (determinant,
localization, ...)
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Extreme Value Analysis

Causal Inference




Linear Regression

Gaussian Processes | - &O\Q._ __o Hidden Markov Models

Extreme Value Analysis

Causal Inference



e (General considerations

e Statistical Methods & lllustrations

{ e Conclusion J




Conclusion

e The emergence and improved access to large datasets and increased
computational power, transformed the field of applied statistics and
computer science.

e New tools are needed to handle large data. The emergence of new tools
creates new approaches, applications, products, findings.

e Many areas of climate science and climate services are concerned by
these evolutions.

e However, especially in cliimate science, problems for which small data
prevails remain many, and are still a very important aspect in applied
statistics.



Thank you
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Climate Informatics, NCAR, 2014 to present
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Computational & Information Systems Lab
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/ @ 7“" International Workshop on Climate Informatics

Home , September 20-22, 2017

Important Dates 01 7 Hosted by the National Center for Atmospheric Research in Boulder, CO
o Climate Informatics Workshop

egistration

About Climate Informatics

Application for Travel Support . . . . .
We have greatly increased the volume and diversity of climate data from satellites,

environmental sensors and climate models in order to improve our understanding of the
Paper Submission Guidelines climate system. However, this very increase in volume and diversity can make the use of
traditional analysis tools impractical and necessitate the need to carry out knowledge
discovery from data. Machine learning has made significant impacts in fields ranging from
Poster Guidelines web search to bioinformatics, and the impact of machine learning on climate science
could be as profound. However, because the goal of machine learning in climate science is
to improve our understanding of the climate system, it is necessary to employ techniques

Hackathon that go beyond simply taking advantage of co-occurence, and, instead, enable increased
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JMO7 - Artificial Intelligence and Big data in Weather and Climate Science (IAMAS, IAHS)
Convener: Philippe Roy (Canada, IAMAS)

Co-Conveners: Alexis Hannart (Canada, IAMAS), David Hall (USA, IAMAS), Allen Huang (USA,
IAMAS), Ashish Sharma (Australia, IAHS)

Description

Rapid advances in artificial intelligence, combined with the availability of enormous amount of
data (termed Big Data) is opening new avenues for climate analysis and climate scenarios. The
long awaited promises of Al is now common in many disciplines. Applying Al methods, combined
with physical knowledge, can improve climate analysis and provide better climate simulations
and climate products, notably for high-impact events, such as floods, wildfires and winds.

Contributions are welcome in the following areas, but not limited to:

- Decision-making tools for climate and weather related hazards;

- Data mining and explorations approaches

- Pattern recognition and classification

- Climate and weather emulators

- Smart-grid and smart cities applications combining Al and weather and climate data
- Novel approaches in the domain of natural hazards using Al methods




Prospective considerations on Al - JASON report

REPORT DOCUMENTATION PAGE | OME B DPDE0185

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining tha
data nesded, and complating and reviewing this collection of information. Send comments rgarding this burden estmata or any other aspect of this collection of informatian, induding suggestions for reducing
this burden to Department of Defanse, Washington Hoadquarters Services, Diractorate for Information Operations and Reports (0704-0188), 1215 Jfferson Davis Highway, Suite 1204, Ariinglon, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no parson shall be subject to any penaity for failing to comply with a collection of information if it doas not display a cumrendy
vald OMB contral number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
January 2017
4, TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Perspectives on Research in Artificial Intelligence and Artificial General Intelligence | 5b. GRANT NUMBER
Relevant to DoD

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
1316JA01

5e. TASK NUMBER
PS

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

The MITRE Corporation
JASON Program Office JSR-16-Task-003
7515 Colshire Drive, MS T130
McLean, Virginia 22102

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
OSD ASDR&E

Basic Research Labs 11. SPONSOR/MONITOR'S REPORT
4800 Mark Center Drive NUMBER(S)

Alexandria VA
12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution authorized for Public Release
13. SUPPLEMENTARY NOTES

Artificial Intelligence (Al) is conventionally, if loosely, defined as intelligence exhibited by machines.
Operationally, it can be defined as those areas of R&D practiced by computer scientists who identify with one or
more of the following academic sub-disciplines: Computer Vision, Natural Language Processing (NLP), Robotics
(including Human-Robot Interactions), Search and Planning, Multi-agent Systems, Social Media Analysis
(including Crowdsourcing), and Knowledge Representation and Reasoning (KRR). The field of Machine Learning
(ML) is a foundational basis for AI. While this is not a complete list, it captures the vast majority of Al researchers.

Artificial General Intelligence (AGI) is a research area within Al, small as measured by numbers of researchers or
total funding, that seeks to build machines that can successfully perform any task that a human might do. Where Al
is oriented around specific tasks, AGI seeks general cognitive abilities. On account of this ambitious goal, AGI has
high visibility, disproportionate to its size or present level of success, among futurists, science fiction writers, and
the public.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSCN
OF ABSTRACT | OF PAGES Dr. Robin Staffin

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include ares

Unclassified Unclassified | Unclassified UL code) 571-372-6460

Standard Form 298 (Rev. 8-98)
Preseribed by ANS| Std. 239.18




Prospective considerations on Al - JASON report

e BD/DL is the mainstream paradigm of Al thus far:
— Big Data (10% - 107 examples) combined with Deep Learning,
— DL is by now a well documented and well accessible expertise.

3.8 Summary of the Big Data Deep Learning “Dogma”

The powerful successes of Big Data / Deep Learning have given it the status of a kind of
dogma—a set of principles that, when followed, lead often to unexpectedly powerful successes.
A brief summary of these principles might be the following:

e Use deep (where possible, very deep) neural nets. Use convolutional nets, even if you
don’t know why (that is, even if the underlying problem is not translation invariant).

e Adopt flat numerical data representations, where the input is a vector of reals and the
internal representation (for a DNN, the activations) is an even larger number of reals.
Avoid the use of more complicated data structures. The model will discover any
necessary structure in the data from its flat representation.

e Train with big (really big) data. Don’t load on model assumptions, but rather learn
everything from the data—that is where the truth lies. As an example, don’t attempt to
hardwire the laws of aerodynamics into an autopilot application. With enough data, it is
more efficient to let the DNN discover them on its own.

e An approximate answer is usually good enough. When it works, it is not necessary to
understand why or how.
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e BD/DL is probably not the end of the story in IA:
— Small Data (102 - 10* examples) is not unfrequent.

— Explainability / reliability / causality is often requested and yet not particularly
amenable to DL.

gradient vector from a particular
panda to the nearest gibbon boundary

+.007 x
>
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 15: One can get from the panda classification to the gibbon classification by adding what
appears to us to be noise. The resulting image looks to us like a panda, but it looks to the DNN
like a gibbon, with 99.3% confidence. Source: see footnote [36].




Prospective considerations on Al - JASON report

S AREAS OF RAPID PROGRESS OTHER THAN DEEP
LEARNING

While the “Big Data / Deep Learning dogma”, as summarized above in Section 3.4, has rightly
captured the imagination of experts and the lay public alike, there is some danger of its
overshadowing some other areas of Al that are advancing rapidly and hold significant future
promise, including in DoD applications. In this Chapter, we review what we think are the most
important of these.

e Next possible hot topics:
— Probabilistic graphical models / Bayesian networks, Gaussian processes,
— Probabilistic generative models / Bayesian priors,
—  Hybridization with other tools (numerical physical models, agent models).

> What's coming next will likely originate from the field of applied statistics.

> BDIDL is key, yet a «pure play» BD/DL scientific strategy is arguably risky.



