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- Laplacian Determinism

We may regard the present state of the universe as
the effect of its past and the cause of its future. An
Intellect which at a certain moment would know all
forces that set nature in motion, and all positions of
all items of which nature is composed, if this
Intellect were also vast enough to submit these data
to analysis, it would embrace in a single formula the
movements of the greatest bodies of the universe
and those of the tiniest atom; for such an intellect
nothing would be uncertain and the future just like
the past would be present before its eyes.

Laplace

Essai philosophique sur les probabilités
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[Storical Views of Predictability (1)

1.The Austrian School ~ 1893

The meteorologist of Austrian School considered
forecasting to be unscientific.

Evoking the attitude of some members of this school:
forecasting is immoral, a danger to the character of a
meteorologist, and an affair for romantics.

(BAMS, 2006, Vol.87, pp1662-1667)
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Mvmws of Predictability (2)

2. The Norwegian School (V. Bjerknes) ~1904

 Presented a set of equations that should be solved to calculate
the future weather, as an application of Laplacian determinism.

 Considered weather to be predictable in principle.

3. The Chicago School ~ 1950s

« Optimistic followers of the Laplacian determinism (V. Bjerknes)

e Considered the limit of predictability of the weather restricted
only by the imperfections of observations of the initial
conditions and the imperfections in the models.

(BAMS, 2006, Vol.87, pp1662-1667)
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Mvmws of Predictability (3)

4. Lorenz (Deterministic Chaos, Predictability) ~ 1960s

« An irrefutable theory of the predictability of weather, nonlinear
dynamical systems.

« Showed that for some physical systems, while Laplacian
determinism holds, the prediction of future behavior will
necessarily be imperfect.

(BAMS, 2006, Vol.87, pp1662-1667)

e fl’(l) tlt_i - f_ /GEORGE
I@S o COLA v W Mas

IIIIIIIIII




Mvmws of Predictability (4)

5. Predictability in the midst of Chaos ~ 1980s

« Atmosphere-ocean interactions and atmosphere-land
interactions enhance predictability of the coupled system far
beyond the limits of predictability of weather.

 Forced response of the tropical atmosphere is so strongly
determined by the underlying ocean, and the forced response
of the tropical ocean is so strongly determined by the overlying
atmosphere, that there is no sensitive dependence on the initial
conditions.

 Coupled ocean-land-atmosphere system is predictable.
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R.m.s. error (hPa) of extratropical PMSL forecasts for three and five days ahead
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(Thanks to ECMWEF!)
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R.m.s. errors and differences between successive forecasts
Northern hemisphere 500hPa height Winter
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Mof 1-Day Forecast Error,

Lorenz Error Growth, and Forecast

Skill for ECMWF Model

(500 hPa NH Winter)

1982 | 1987 | 1992 | 1997 | 2002
“I Adh | " |
nitial error 20 - " " 3
(1-day forecast error) [m]
Doubling time [days] 1.9 1.6 1.5 1.5 1.2
Forecast skill [day 5 ACC ] 0.65 | 0.72 | 0.75 | 0.78 | 0.84
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ERA FORECAST VERIFICATION

500hPa GEOPOTENTIAL = = = = = *SCORE REACHES 5.00 MA

ANOMALY CORRELATION FORECAST e et Thobe st
N.HEM LAT 20.000 TO 90.000 LON -180.000 TO 180.000

Forecast Day MA =365 Day Mov:ng Average
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Commentary

 Several NWP Models have comparable skill.

* Initial error growth has steadily increased, yet skill of five
day forecast has also increased.

* NWRP progress in past 30 years: Improved one day forecast.

* No scientific breakthrough (except ensemble forecasting).

« No enhancement of observations.

 Hard work, improve models, improved assimilation and
Initialization.

« Possible lesson for Dynamical Seasonal Prediction.
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-rom Numerical Weather Prediction (NWP)
To Dynamical Seasonal Prediction (DSP) (1975-2004)

*Operational Short-Range NWP: was already in place

*15-day & 30-day Mean Forecasts: demonstrated by Miyakoda (basis for creating
ECMWF-10 days)

Dynamical Predictability of Monthly Means: demonstrated by analysis of variance
Boundary Forcing: predictability of monthly & seasonal means (Charney & Shukla)

*AGCM Experiments: prescribed SST, soil wetness, & snow to explain observed
atmospheric circulation anomalies

*OGCM Experiments: prescribed observed surface wind to simulate tropical Pacific
sealevel & SST (Busalacchi & O’'Brien; Philander & Seigel)

*Prediction of ENSO: simple coupled ocean-atmosphere model (Cane, Zebiak)

*Coupled Ocean-Land-Atmosphere Models: predict short-term climate fluctuations
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wulation of (Uncoupled) Boundary-Forced
Response: Ocean, Land and Atmosphere

INFLUENCE OF OCEAN INFLUENCE OF LAND
ON ATMOSPHERE ON ATMOSPHERE
— Tropical Pacific SST — Mountain / No-Mountain
— Arabian Sea SST — Forest / No-Forest (Deforestation)
— North Pacific SST — Surface Albedo (Desertification)
— Tropical Atlantic SST — Soil Wetness
— North Atlantic SST — Surface Roughness
— Sealce — Vegetation
— Global SST (MIPs) — Snow Cover

(Thanks to COLA!)
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MHeat Wave of summer 2003
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EFFECTS OF SST ANOMALY

O T(X,Y) > 0Q(X,y,2) > oV
SST anomaly heating anomaly circulation anomaly
~ 5-7 days

« 07 (magnitude, structure)
T (magnitude, structure) ~ 10-30 days
e V(xy,2): large scale flow
e O (conv., div.):

latitude regime (f)
* instability

« 0Q (magnitude, structure)
* location of 5Q w.rt. V
* tropics: Hadley, Walker, monsoon
« extratropics: quasi-stationary
waves, forcings and instability
» U(y,z): resonance, propagation
(0Q = dU)
dQ = d(Hadley) = dU = 6 (extratrop. stat. waves)
2. Forced Rossby waves
3. Normal modes

—_

Shukla and Kinter 2006
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Questions:

Have “We” Kept the Promises We Made?
What are the Stumbling Blocks?
What are the Prospects for the Future?
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mc « 1980 — 2004 . 1980 — 2001
» 4 case of initial time — "T" — » 4 case of initial time
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ENSO Forecast for dynamical models, Jun 05 - Mar 07
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Nino34 1-Month Lead Prediction
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Dynamic CGCMs Only

Nino34 6—Month Lead Prediction
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Womaly Prediction for Nino3.4

DJF 1981/82 to AMJ 2004

15-member CFS reforecasts
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SIP Atlantic Seasonal Forecasts
July to Nov

Caorrelation=0.78( 1.00)
RMS Error= 3.07( 4.56)

— FORECAST =-+#---  Observations 2 Standard Deviations
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Commentary

25 years ago, a dynamical seasonal climate prediction was not
conceivable.

In the past 20 years, dynamical seasonal climate prediction has
achieved a level of skill that is considered useful for some societal
applications. However, such successes are limited to periods of
large, persistent anomalies at the Earth’s surface. Dynamical
seasonal predictions for one month lead are not yet superior to
statistical forecasts.

There is significant unrealized seasonal predictability. Progress in
dynamical seasonal prediction in the future depends critically on
Improvement of coupled ocean-atmosphere-land models,
Improved observations, and the ability to assimilate those
observations.
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Status of Dynamical Seasonal Prediction

1.Coupled O-A models (both complex GCMs and intermediate complexity
models) are frequently making skillful prediction of tropical Pacific SSTA
(NINO 3, NINO 3.4, etc) and the corresponding tropical circulation up to six
months. However, the skill is highly variable depending on IC, year (ENSO
events), model, ensemble size etc. Multi Model ensembles are most
skillful.

2.Even the prediction of ENSO is limited to a selective preconditioning of
wind stress, SST, and subsurface temperature anomalies in the equatorial
Pacific.

3.There is no robust evidence of skill in seasonal prediction of SSTA in the
Indian Ocean, the tropical Atlantic, or the extratropical oceans; or any
other planetary scale modes of atmospheric circulation (monsoons, NAO
etc.)

4.There is no robust evidence that dynamical seasonal prediction of surface
temperature and precipitation over North America is more skillful than
statistical models.
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w‘/’commentary

e The most dominant obstacle in realizing the
potential predictability of intraseasonal and
seasonal variations is inaccurate models, rather
than an intrinsic limit of predictability.

z,

Center of Ocean-Land- ._/"
I@S Atmosphere studies ./‘ \“ CREW
nter for Research on
COLA v vironment and Water N TERS T

<



stematic Error: MSLP (NDJ)

Mean Sea Level Pressure [hPa]
Bias: EXP(CNRM) regarding ERA-40 reanalysis

Forecast start month and years: August / 1958-2001
FC period: months 4-6 (NDJ), ens: 0-8

Mean Sea Level Pressure [hPa]
Bias: EXP(ECMWF_ctrl) regarding ERA-40 reanalysis
Forecast start month and years: August / 1958-2001

FC period: months 4-6 (NDJ), ens: 0-8

Mean Sea Level Pressure [hPa]

Bias: EXP(MPI) regarding ERA-40 reanalysis
Forecast start month and years: August / 1969-2001
FC period: months 4-6 (NDJ), ens: 0-8

Mean Sea Level Pressure [hPa]
Bias: EXP(UKMO) regarding ERA-40 reanalysis
Forecast start month and years: August / 1959-2001
FC period: months 4-6 (NDJ), ens: 0-8
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atic Error: Surface Temp. (NDJ)

1 (C

Surface Temperature ['C]

Bias: EXP{CNRM) regarding ERA-40 reanalysis
Forecast start month and years: August / 1958-2001
FC period: months 4-6 (NDJ), ens: 0-8

Surface Temperature ['C]

Bias: EXP(MPI) regarding ERA-40 reanalysis
Forecast start month and years: August / 1969-2001
FC period: months 4-6 (NDJ), ens: 0-8

Surface Temperature ['C]

Bias: EXP(ECMWEF_ctrl) regarding ERA-40 reanalysis
Forecast start month and years: August / 1958-2001
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Forecast start month and years: August / 1959-2001
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Annual Mean Precipitation
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ual Cycle of SST Climatology

1-6 month forecast, APCC/CIIPAS & DEMETER CGCMs
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of Systematic Error on CFS Forecast Skill

NINO3: Warm minus Cold composite

—  (Observation

CFSlong run
(Hindcast composite)
— 1st — 6th
— 2nd — 7th
3rd — 8th
4th — 9th

S5th

SST anomalies

Jan Jul Jan Jul Jan

» Warm composite (82/83, 86/87, 91/92, 97/98) - Cold composite (84/85, 88/89, 98/99, 99/00)
» Dashed lines denote composite for Hindcasts at different lead times

Jin and Kinter, 2007
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Correlation coefficients

0.7

Forecast lead month

—— Correlation between 15t PCs based on

observations and hindcasts at different lead times

— Correlation between 15t PCs based on long run and

hindcasts at different lead times

Jin and Kinter, 2007
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QOutline

» Historical Overview

e Success of NWP during the past 30 years

 From Weather Prediction to Dynamical Seasonal Prediction
e Current Status of Dynamical Seasonal Prediction

 Model Deficiencies in Simulating the Present Climate

* Tropical Heating and ENSO Forced Response

 Model Fidelity and Prediction Skill

e Factors Limiting Predictability: Future Challenges
v Data Assimilation and Initialization
v Biosphere, Cryosphere, Stratosphere Effects
v' Seasonal Prediction in a Changing Climate
v' Seamless Prediction of Weather and Climate
v’ Computational Power

« Suggestions for the Future
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wommentary

 Models with high deficiencies in simulating
tropical heating produce highly deficient
extratropical response to ENSO

« Examples: ECMWF, NCEP, GFDL, COLA
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Thanks to Arun Kumar (CPC/NCEP)

MRF8 MRF3
SEP-NOV Climatology (AMIP) SEP-NOV Climatology (CMP)

Surface Stress

Total Precipitation

O 7 00—
30N 4 <_/J:—\1E_ID

405 , v "
U?UOE 120E 140E 160E

RF8: high, middle, low clouds allowed to exist 2
I@ RF9: Only high cloud allowed to exist over regions of tropical deep convection




Thanks to Arun Kumar (CPC/NCEP)

0BS . COMPOS I TE

MRF8 COMPOSITE

60N{ C

30N 1

308

608 -

60E 120E 180 120W 60W 0

I@ES

RF8: high, middle, low clouds allowed to exist 2
RF9: Only high cloud allowed to exist over regions of tropical deep convection



- WIP/CNP - CTP/WNP
515 hPa Height

(2) GOGA

Note: amplitude of
model response quite
weak; structure is PNA
rather than ENSO
forced

Vintage 1980
Observation A G C M
WTE/CNP - CTP/WNP | (Lau, 1997, BAMS)

(2} 500 hPa Height
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odel

Simulation of ENSO Effects

5OO hPa height (meters) anomalies
ACC = 0.98

—l R
-90  -30 30 90

Observed

Vintage 2000
AGCM

NINO3 Warm(83,87,92) — Cold(85,89)
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RAS R40

i /1 . . WY

Evolution of
e Climate Models
e | 1980-2000
’ ) Model-simulated and observed
/U\ rainfall anomaly (mm day-1)
Gk 20 1983 minus 1989
Crdonian: ——= 7 :

SOTCA

- /
2.\ CREW
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Probability Distribution

Percent Variance over PNA region explained by tropical SST

GCM1 {open square) 29%
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Crals: ool A SFS

Probability Distribution

0.5 4
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3.3 1

0.7 1

3.1 7

Percent Variance over PNA reglon explomed by tropical SST

GCH‘I {open squar'e} 29%
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WFM) Rainfall Variance in Models [mm?]
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Free Variance

mer (JJA) Rainfall Variance in AGCMs [mm?]

Signal-to-noise
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QOutline

» Historical Overview

e Success of NWP during the past 30 years

 From Weather Prediction to Dynamical Seasonal Prediction
e Current Status of Dynamical Seasonal Prediction

 Model Deficiencies in Simulating the Present Climate

* Tropical Heating and ENSO Forced Response

 Model Fidelity and Prediction Skill

e Factors Limiting Predictability: Future Challenges
v Data Assimilation and Initialization
v Biosphere, Cryosphere, Stratosphere Effects
v' Seasonal Prediction in a Changing Climate
v' Seamless Prediction of Weather and Climate
v’ Computational Power

» Suggestions for the Future
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W Hypothesis

Models with low fidelity in simulating
climate statistics have low skill In
predicting climate anomalies.

DelSole 2007 (research in progress)
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asure of Fidelity: Relative Entropy
(Kleeman 2001; DelSole and Tippett, 2007)

Measure of the “distance” between two pdfs

R = [a(x)log ;(x) d

(x)

+ f=climatology of model forecasts at fixed lead time, fixed initial time

* a = climatology of analyses (“observations”) (distribution of variable
in JFM, FMA, etc.)

«  For 1D normal distributions with mean p and variance o°
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sure of Fidelity: Anomaly Correlation

ACC = correlation between forecast and
verification at each grid point

cov(F,A)

Of(la

ACC =

Notes:

ACC is calculated from seasonal means for 1981-2001.

ACC measures joint variability (i.e. skill), relative entropy does not.
Relative entropy measures fidelity of climatological distribution.

ACC is not a spatial correlation, but a temporal correlation at each
grid point.

Center of Ocean-Land- ._/"
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W DEMETER

« Demeter hindcasts downloaded from ECMWF'

« 7 models (CER, ECM, ING, LOD, MET, MPI, UKM)

* 9 ensemble members

« Initial conditions: February 1, May 1, August 1, November 1
* 6-month lead time

« 22 Years: 1980-2001

« 2m temperature over land

* Consider only 3-month means (JFM, FMA, . . ., OND)

Thanks to Emilia Jin for providing the DEMETER data.

Center of Ocean-Land- ._/"
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Mlculaﬂon Detalls

» Verification data: HADCRUT2 from CRU (Jones & Moberg)
« All data interpolated onto HADCRUT2 observation grid

« Relative entropy and anomaly correlation computed at each grid
point separately for 1980-2001.

« Grid point values of R and ACC averaged over selected regions.
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NAM (CC=-0.52)
20 LA B A Fidelity vs. Skill

2 . DEMETER 1980-2001
15 . _ « Nov (-0.56) Seasonal Forecasts
0 - * Feb (-0.89)
o * May (-0.72) - --
% o Aug (0.76) 7 models, 4 initial conditions
@ 5
% Lead Time = 0 months

O L | L | L | L 1 .

G Bk G 0R Gn DR Fidelity and Skill are
related.
Globe (CC=-0.48)
<& « Models with poor
° * Nov (-0.39) :

215 | N i & ol (80 cllmatol-ogy tend to have
-.g z - ° ° * May (-0.39) poor skill.
Wqeg L . g * Aug (-0.54)
2 o o o - Models with better
3 5 4 climatology tend to have
% better skill.

o 1 1 L | L 1

015 025 035 045

Anomaly Correlation :
DelSole 2007 (research in progress)
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Relative Entropy vs. Lead Time —_— cor
(IC=Nov; Seasonal Mean; Global Average) —— ecm
25 T I T I T — ;g
met
L —— mpi
ukm
3:20
£
G
$15
o
)
g
10
5 L | L | 1
0 (NDJ) 1 (DJF) 2 (JFM) 3

Lead Time (months)
Note: Model errors saturate within the first season

DelSole 2007 (research in progress)
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Systematic errors of climate models can be
substantially reduced by empirical corrections

(e.g. flux correction, anomaly coupling,
nudging based on tendency error, etc.)

However, empirical corrections do not
consistently improve forecast skill.
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I@S COLA % CR W M}\s
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QOutline

» Historical Overview

e Success of NWP during the past 30 years

 From Weather Prediction to Dynamical Seasonal Prediction
e Current Status of Dynamical Seasonal Prediction

 Model Deficiencies in Simulating the Present Climate

* Tropical Heating and ENSO Forced Response

 Model Fidelity and Prediction Skill

e Factors Limiting Predictability: Future Challenges
v' Data Assimilation and Initialization
v  Biosphere, Cryosphere, Stratosphere Effects
v' Seasonal Prediction in a Changing Climate
v’ Seamless Prediction of Weather and Climate
v' Computational Power

» Suggestions for the Future
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e ..

Understanding Variations
In Forecast Skill

 What is the Overall Limit of Predictability?

 What Limits Predictability?

— Uncertainty in Initial Conditions: Chaos within
Non-Linear Dynamics of the Coupled System

— Uncertainty as the System Evolves: External
Stochastic Effects

e Model Dependence?
— Model Error

\/_\
Center of Ocean-Land- % ﬁ | R ~
I@ S Atmosphere studies oo CRl_z Vk} n 1 GEORGE
= y Center for Research on
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R.m.s. errors and differences between successive forecasts
Northern hemisphere 500hPa height Winter

S —— R.m.s. errors s i R.m.s. differences
-IE{]. e e T — —

140

120

Current Limits of Predictability A.Hollingsworth,  Savannah  Feb 2003 27
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ﬁ'@,k]@‘z@rb Limited Due to Initial Condition Uncertainty:

Two Time Scales in the Error Growth?

RAMSE (DEGREES)

E(t) = E,(t) + E, (1)

20

dEl_ O(EZ
i ﬁ

1.5 b~

RMSE (DEGREES)

10—

COUPLED MODEL ERRORS

oy = 0.145 (month)™', E; o= 0.8°C
Qg = 0.045 (month)™!, Ep .= 0.65°C

vt

|

j dt
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T N I

s: 4 ENSO cases of NINO3 index in CFS

T~ 8s/ss |— Observation (HadSST v1.1

January Ensemble Mean
February Ensemble Mean
January individual runs

February individual runs

~ —— 3
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Jin and Kinter, 2007
f /
Center of Ocean-Land- e 7
N/ FW P[/GEORGE

S Atmosphere studies  Gopm— C R 1
I@ CO l q @ Center for Research on
Environment and Water

UNIVERSITY



recast Error and Lorenz Curve

_EP CFS daily forecast start from 9Apr to 3May (15 members)
U850 NINO3.4

[m/sec]

- = Fgrecast Error
= Lorenz Curve
10 20 30 40 50 60 70 80 90 100110120130 140 150 160 170 180 190 200 210 220 230 240 250 260 270

Forecast days
- SST [ y ]

[°C]
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ELGRB Limi of Predictabilty of ENSO (Nino3.4

Potential Limit of Predictability of ENSO

0.9

0.8

0.7 1

n Forecast Error /_/__
5 0.6 --mmmmmmmmmmmmmmmmmeemeeeeeae
S /
(@)
gy 0.5 Jromemeeeeseeeeeeeeeeeeees
% Growth of Idealized Initial Error
50 0.4-
)
()]
0.3-
0.2 20 Years: 1980-1999
4 Times per Year: Jan., Apr., Jul., Oct
0.1-
6 Member Ensembles
%% 3 6 9 12 15 18 21 24

lead time (months)
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Nin03.4 Index

cfs ens sprd

CFS

cfsie ens sprd

degrees

TT—_ CFSIE

Spread

0

_ Lead time (months)
CFSIE - Reduce Noise Version (interactive ensemble) of CFS
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Toward Seamless
Prediction

Nino3.4 SSTA
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MJO Propagation

200hPa velocity potential : 1999yr

JuL1e89

0CT1989

NOV1699 1
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* High resolution shows more clear eastward propagation MJO in 1999yr
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Factors Limiting Predictability:
Future Challenges
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“Fundamental barriers to advancing weather and
climate diagnosis and prediction on timescales from
days to years are partly attributable to gaps in
knowledge and the limited capability of contemporary
operational and research numerical prediction
systems to represent precipitating convection and its
multi-scale organization, particularly in the tropics.”

(Moncrieff, Shapiro, Slingo, Molteni, 2007)
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=

Fundamental barriers to advancing weather and
climate diagnosis and prediction on timescales from
days to years are (partly) (almost entirely?)
attributable to gaps in knowledge and the limited
capability of contemporary operational and research
numerical prediction systems to represent
precipitating convection and its multi-scale
organization, particularly in the tropics.

(Moncrieff, Shapiro, Slingo, Molteni, 2007)
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B cea

eamless Prediction

Since climate in aregion is an ensemble of
weather events, understanding and prediction of
regional climate variability and climate change,
Including changes in extreme events, will require
a unified initial value approach that encompasses
weather, blocking, intraseasonal oscillations,
MJO, PNA, NAO, ENSO, PDO, THC, etc. and
climate change, in a seamless framework.
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Cyclone Resolving Global Models
to
Cloud System Resolving Global Models

1. Planetary Scale Resolving Models (1970~): Ax~500Km
2. Cyclone Resolving Models (1980~): Ax~100-300Km
3. Mesoscale Resolving Models (1990~): Ax~10-30Km
4. Cloud System Resolving Models (2000 ~):  Ax~3-5Km

Organized Cloud Mesoscale Synoptic Planetary
Convection System System Scale Scale

Convective Climate
MJ SN0 chang

I@S “aimo r];r? g g CR Z
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olution In Climate Prediction
IS Possible and Necessary

Coupled Ocean-Land-Atmosphere Model ~2015

Assumption:
Computing power
enhancement by a
factor of 10°

~10 km x ~10 km (eddy-resolving)
100 levels

(Unstructured, adaptive grids)

e Improved understanding of the coupled O-A-B-C-S interactions

e Data assimilation & initialization of coupled O-A-B-C-S system
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THANK YOU!

ANY QUESTIONS?
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