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Combining crop and climate models
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Seasonal forecasting of crop yield using 

the DEMETER hindcasts

• Multi-model ensemble: 7 (models) * 

9 ensemble members

• Run each seasonal hindcast 

realisation through GLAM to create 

an ensemble of crop yields

• Try various bias-correction and 

calibration options

Challinor, A. J., J. M. Slingo, T. R. Wheeler and F. J. Doblas-Reyes (2005). 

Probabilistic hindcasts of crop yield over western India. Tellus 57A 498-512.



Probabilistic forecasting of crop 

failure: ROC curves
Failure: Y<500kg/ha (Rao et al. 2000)                    Y<400kg/ha 

• NCAL and BIC are most skillful

• BIC tends to perform less well than NCAL; 
some failures never simulated by BIC
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Challinor, A. J., J. M. Slingo, T. R. Wheeler and F. J. Doblas-Reyes (2005). 

Probabilistic hindcasts of crop yield over western India. Tellus 57A 498-512.



Inverted ROC curves
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From Hansen, J., A. J. Challinor, A. Ines, T. R. Wheeler and V. Moron (2006). 

Translating climate forecasts into agricultural terms: advances and challenges. 

Climate Research, 33 (3) 27-41. 

• Cannot directly compare the 

predictability of Y<500 with 

Y<400, as they occur with 

different frequencies 

(Lalaurette, 2004) 

• =>IROC: as ROC, but false 

alarm ratio on the x-axis.  

• As with the ROC curve, skill 

is greater when the area under 

the curve is greater. 

No-bias line 
(simulated 
crop failure 
occurrence = 
climatology)

Perfect skill

Y<200

Y<500

Thin lines show multi-model ensemble;

Thick show single-model ensemble

Yield is another metric of SF skill
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Seasonal forecasting as a testbed for 

climate change

• Evaluating applications models

• Some commonality/similarity in methods 

– Quantification of uncertainty (e.g. multi-model ensembles)

– Communication of uncertainty and probabilities

– Down/up scaling

SF is relevant to climate change studies:



Seasonal forecasting in a changing climate

• ‘Taking the shorter route’

• But climate change is not just a 2100+ problem

– We need to capture changes in interannual variability 

associated with climate change 

– Means are also important

o Signal already seen in agricultural yield; CO2 and warming 

roughly cancel (Lobel and Field, 2007)

o Adaptation will mean likely changes in crop variety

• Opportunities associated with climate change (cf Oxfam)

• As ‘climate change processes’ become increasingly important

– 2*CO2 to look at processes (and projections of impacts)

– Shorter timescales, where uncertainty is less, to look at 

prediction

What is the relevance of climate change for SF?



An ensemble of crop yield 

simulations for doubled CO2

• Run GLAM 2.0 using

– One baseline climate scenario (PRECIS)

– 28 parameter sets, varying the response of leaves, biomass 
and transpiration to elevated CO2

• Compare simulated yields, water-use and LAI to 
FACE and controlled environment data

– 18 ensemble members produced realistic results

• Run future climate scenario (A2 2071-2100) with only 
those 18 members and examine output

• Identify key processes and associated uncertainties

• Sensitivity tests on DSSAT and Qnut models to assess 
level of consensus on these processes and uncertainties



Quantifying uncertainty for prediction 

and  adaptation
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Standard wisdom:

“Droughted plants take better advantage of high CO2

because they are at a point in the photosynthesis curve that is more

CO2-sensitive.” (TAR WGII) 

Long, et al., 2004

What do: 

• Models

• FACE

say?

Interaction between water stress and 

assimilation



Interaction between water stress and 

assimilation

y: yield change for well-watered crop (%) minus yield change for stressed crop (%)

x-axis shows, roughly, increasing level of organisation from left to right



Key result

Effect of elevated CO2 on stressed versus 

irrigated crops:

• Leaf-level: greater benefit for stressed crops

• Canopy-level: greater benefit for irrigated crops?

– But FACE inconclusive

• Implications for rainfed vs irrigated agriculture



Need to account for:

• The emerging impacts of climate change

– CO2 fertilisation and interaction with water stress

– Changes in mean temperature 

– Incidence of heat stress events

• The effect of adaptation, and other social and 

management factors

• Errors in observations and simulations – Bayesian 

framework?

Conclusions



To do this we need:

• Robust process-based applications models

– Note usefulness of upscaled applications models, especially as 
computer power and resolution increase

• Data for calibration and evaluation of application models

• Consensus on calibration techniques for application 
models? 

– Probably quite application/model dependent, so we should 
avoid being too prescriptive.

– e.g. GLAM has a simple process-based calibration parameter 
that can correct some bias in mean rainfall

Conclusions




