ECCC seasonal & decadal update

Bill Merryfield Canadian Centre for Climate Modelling and Analysis

WGSIP 24 27-29 March 2023

Current ECCC/GPC Montreal seasonal system

System	Debut	Climate models	NWP models	Ensemble	Coupled?	Range
HFP	1996	GCM2	SEF	2×6	Ν	3 mon
HFP2	2008	GCM2, GCM3	SEF, GEM	4×10	Ν	4 mon
CanSIPS	2011	CanCM3,CanCM4	-	2×10	Y	12 mon
CanSIPSv2	2019	CanCM4i	GEM-NEMO	2×10	Y	12 mon
CanSIPSv2.1*	2021 Dec	CanCM4i	GEM5-NEMO	2×10	Y	12 mon
CanSIPSv3	Mid-2024	CanESM5	GEM5.2-NEMO	2×20	Y	12 mon

HFP = Historical Forecasting Project CanSIPS = Canadian Seasonal to Interannual Prediction System

* https://iridl.ldeo.columbia.edu/documentation/Models/NMME/CanSIPS-IC3/technote.pdf

M	<u>id-2024: CanSIPSv3</u>	Atr	nos	Oc	ean	Sea Ice	•	Land	BGC	
•	CanESM5:	CanAM5	T63/L49	+ NEMO	ORCA1/L45	+ LIM2	+	CLASS3.6	+ CMOC/(CTEM
•	GEM5.2-NEMO:	GEM5.2	1°/L85	+ NEMO	ORCA1/L50	+ CICE4	+	ISBA/SVS		

ECCC long range ENSO outlook

Recent

Historical

New seasonal products based on daily/subdaily data

- Daily/subdaily seasonal hindcast & forecast data for >30 variables provided to Copernicus since mid-2021
- This opens possibilities for developing products such as
 - cooling degree days = accumulation of daily mean temperatures >18°C
 - heating degree days = accumulation of daily mean temperatures <18°C
 - growing degree days = accumulation of daily mean temperatures <*N*°C, *N*= 4, 5,10...
 - number of wet days exceeding threshold precipitation, e.g. 1 mm
- Potentially useful for energy, agriculture, etc.
- For DD, add daily T2m anomalies to 5-day smoothed daily ERA5 climatology for 1991-2020

CRPSS Heating/Cooling Degree Days vs T2m

DJF 1991-2020 Lead 0 months

> CanSIPSv2.1 HDD

SON 1991-2020 Lead 0 months

CanSIPSv2.1

CanSIPSv2.1 T2m

CanSIPSv2.1 T2m

CanESM5 development for seasonal forecasting

CanESM5, CCCma's CMIP6 ESM, has been "slow-tracked" for seasonal/decadal operations due to
➢ Very high equilibrium climate sensitivity (5.6°C)
➢ Inaccurate ENSO amplitude and seasonality →

- Have experimented with online atm/ocn bias correction using method of Kharin and Scinocca (GRL, 2012)
 - > Nudge atmosphere to ERA5, ocean T/S to ORAS5, calculate 1981-2010 monthly climatology of nudging terms
 - Apply as non-interactive adjustments to tendencies

 Bias correction improves CanESM5 seasonal skills, which compare well to CanCM4i (except for ENSO)

Global mean ACC averaged over all target seasons, 0-9 month lead (1991-2020) ightarrow

Extra slides

CRPSS Heating/Cooling Degree Days vs T2m

MAM 1991-2020 Lead 0 months

> CanSIPSv2.1 HDD

JJA 1991-2020 Lead 0 months

CanSIPSv2.1

CanSIPSv2.1 T2m

CanSIPSv2.1

T2m

NOAA Population weighted degree day outlook

https://www.cpc.ncep.noaa.gov/pacdir/DDdir/ddforecast.txt

MONTHLY TOTAL DEGREE DAY FORECAST

BASE 65 F

NWS CLIMATE PREDICTION CENTER COLLEGE PARK MD

300 PM EDT THU 18 AUG 2022

NEW ENGLAND (CT ME MA NH		R	RI VT)			NORMALS		FORECAST				
		HEATING				COOLING			(1981-2010)		DEPARTURE	
YEAR	MONTH	90%	MEAN	10%		90%	MEAN	10%	HDD	CDD	HDD	CDD
2022	9	57.	107.	149.		12.	32.	66.	138.	24.	-31.	8.
2022	10	341.	425.	503.		1.	2.	3.	465.	0.	-40.	2.
2022	11	588.	693.	785.		0.	0.	0.	731.	0.	-38.	0.
2022	12	885.	1037.	1166.		0.	0.	0.	1086.	0.	-49.	0.
2023	1 1	1006.	1204.	1421.		0.	0.	0.	1260.	0.	-56.	0.
2023	2	882.	1005.	1144.		0.	0.	0.	1053.	0.	-48.	0.
2023	3	814.	893.	991.		0.	0.	0.	928.	0.	-35.	0.
2023	4	481.	546.	630.		0.	0.	0.	572.	0.	-26.	0.
2023	5	182.	256.	328.		3.	9.	18.	281.	7.	-25.	2.
2023	6	21.	47.	82.		39.	80.	123.	57.	65.	-10.	15.
2023	7	1.	9.	22.		135.	207.	281.	11.	180.	-2.	27.
2023	8	6.	20.	37.		118.	175.	237.	24.	147.	-4.	28.
2023	9	61.	113.	158.		11.	31.	65.	138.	24.	-25.	7.
2023	10	339.	426.	506.		1.	2.	3.	465.	0.	-39.	2.
2023	11	580.	686.	780.		0.	0.	0.	731.	0.	-45.	0.

Probabilistic Ice-Free / Freeze-Up Date Forecasts

Dates that sea ice concentration falls below / rises above 50%

Verification of 2022 Ice-Free Date** from 1 May

Forecast

Observed

**compared to 2013-2021 average

Dirkson, A., B. Denis, M. Sigmond and W. J. Merryfield, 2021: Development and calibration of seasonal probabilistic forecasts of ice-free dates and freeze-up dates. *Weather and Forecasting*, 30, 301-324, <u>https://doi.org/10.1175/WAF-D-20-0066.1</u>.

Ice-Free / Freeze-Up Dates (Probabilistic)

Dates that sea ice concentration falls below / rises above 50%

Verification of 2021 Freeze-Up Date** from 30 Forecast

Observed

Dirkson, A., B. Denis, M. Sigmond and W. J. Merryfield, 2021: Development and calibration of seasonal probabilistic forecasts of ice-free dates and freeze-up dates. *Weather and Forecasting*, 30, 301-324, <u>https://doi.org/10.1175/WAF-D-20-0066.1</u>.

2022 Ice-Free Date forecast from 30 Apr

**compared to 2012-2020 average

Ice-Free / Freeze-Up Dates (Deterministic)

Dates that sea ice concentration falls below / rises above 50%

Verification of 2021 Freeze-Up Date** from 30 Sep

2022 Ice-Free Date forecast from 30 Apr

Sigmond, M., M. C. Reader, G. M. Flato, W. J. Merryfield and A. Tivy, 2016: Skillful seasonal forecasts of Arctic sea ice retreat and advance dates in a dynamical forecasting system. *Geophys. Res. Lett.*, 43, 12,457-12,465, <u>https://doi.org/10.1002/2016GL071396</u>.

**compared to 2012-2020 average

Sea Ice Probability

Dirkson, A., W. J. Merryfield and A. H. Monahan, 2019: Calibrated Probabilistic Forecasts of Arctic Sea Ice Concentration. *J. Clim.*, 32, 1251-1271, <u>https://doi.org/10.1175/JCLI-D-18-0224.1</u>

