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JMA/MRI-CPS2 (June 2015-Feb. 2022) JMA/MRI-CPS3 (Feb. 2022-)
Atmosphere 
model
JMA global 
atmospheric 
model

Version: GSM1011C - SiB
Resolution: ~110 km (TL159L60）
Model top: 0.1hPa
B.C.: CMIP5 RCP4.5 GHG, aerosol climatology 
(1D), Ozone climatology from MRI-CCM1

Version: GSM2003 ‒ iSiB
Resolution: ~55 km (TL319L100）
Model top: 0.01hPa
BC: CMIP6 SSP2-4.5 GHG, 3D aerosol climatology from 
aerosol MASINGAR model, Ozone climatology from MRI-
CCM2, Volcanic aerosols in stratosphere  (off-line)

Ocean model
(MRI.COM)

Version: MRI.COM v3.2
Resolution: 1.0° x 0.3-0.5°, L52+BBL

Version: MRI.COM v4.6
0.25° x 0.25° L60

Initial condition Atmosphere: JRA-55
Land: JRA-55 land analysis
Ocean: MOVE/MRI.COM-G2 T, S, SSH 3DVAR
Sea ice: no assimilation

Atmosphere: JRA-3Q
Land: Land analysis forced by JRA-3Q
Ocean: MOVE/MRI.COM-G3 T, S, SSH 4DVAR
Sea ice: MOVE/MRI.COM-G3 3DVAR

Initial 
perturbation

Atmosphere: Bred vector in the tropics and N.H.
Ocean: perturbations forced by the bred vectors

Atmosphere: Bred vector in the N.H. and S.H.
Ocean: perturbation using ocean obs. errors

Model 
uncertainty

Stochastic physics (SPPT) ←

Ensemble 13 members/5 days x 4 LAF 5 members/day x 11 LAF
(Predicted daily SSTs are used in Global EPS)

Configurations of seasonal prediction systems
A JMA/MRI-CPS3 description paper was published (Hirahara et al. 2023, J. Meteorol. Soc. Jpn.)
https://www.jstage.jst.go.jp/article/jmsj/101/2/101_2023-009/_article/-char/ja

https://www.jstage.jst.go.jp/article/jmsj/101/2/101_2023-009/_article/-char/ja


New system forecasts/reforecasts are now available 
from C3S and S2S

• Seasonal prediction skill was 
improved.
• Sub-seasonal prediction skill 

was improved in particular in  
Week 3-4,  MJO skill was 
significantly improved. 

Hirahara et al. (2022)
J. Meteorol. Soc. Japan.
doi:10.2151/jmsj.2023-0

JMA model for S2S was changed to 
CPS3 in Feb 2023.
https://confluence.ecmwf.int/display/S2S/News
https://confluence.ecmwf.int/display/S2S/JMA+model+description

https://confluence.ecmwf.int/display/S2S/News
https://confluence.ecmwf.int/display/S2S/JMA+model+description


Barents Kara sea ice and Eurasian climate

Komatsu, Takaya et al. (2022) GRL

Warm Arctic–Cold Eurasia (WACE) pattern
p Dipole temperature pattern that correlates to the Barents-Kara 

(BK) sea ice. (Mori et al., 2014).

p Obtain as a sea ice forced-response in the atmospheric model 
simulation. (Mori et al., 2014, 2019).

p NOT identified as a response in observation and coupled model 
simulation if focusing on the surface heating over BK sea.    
(Sorokina et al., 2016, Blackport and Screen 2020)

p Closely relates to the atmospheric blocking (Ural blocking high) 
which may NOT be driven by sea ice.  
(e.g., Tyrlis et al., 2020, Luo et al., 2016, He et al., 2020)

Ø The impact of the sea ice condition on Eurasian temperature 
(or WACE) is highly controversial.

WACE
BK sea ice



Data
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https://cds.climate.copernicus.eu/cdsapp#!/dataset/season
al-postprocessed-single-levels?tab=overview

JMA/MRI

ü Focused the forecast averaged from December to February (DJF) .
ü The correlation analysis using several indices focused on the interannual variability.

p Reforecast by operational seasonal prediction system
• SEAS5 (ECMWF)
• GloSea5-GC2-LI (Met Office)
• Météo-France System 7 (Météo-France )
• SPS3.5 (CMCC)
• GCFS 2.0 (DWD)
• JMA/MRI-CPS2 (JMA)

ü the atmosphere-ocean coupled model.

ü Prediction starts at around 01 November in per year.
ü 1993-2016: 24 years
ü Ensemble members = 25 in each system (10: JMA)

(identify 3,240 winters by ensemble predictions) 

p ERA5 Monthly product  (1981-2020)
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Indices

Modification of indices
When we evaluate the correlation in each index, we linearly 
removed the Interannual variability related to Arctic Oscillation 
(AO) to emphasize the relation to the WACE.

# AO strongly correlates to the first EOF mode of temperature over the 
Eurasian continent.

p WACE (Mori et al. 2014)
• Second EOF mode for the DJF temperature over 

Eurasian continent (20-90N, 0-180E).

ERA5s’ 2 m temperature and sea level pressure 
regressed by WACE index (1981-2020)

Contour: sea 
level pressure

p Barents-Kara Sea (BK)
Center of action for temperature of WACE

p Central and East Eurasia (CE)
Center of action for temperature of WACE

p Around Ural mountain (URAL)
Center of action for sea level pressure of WACE

ERA5’s WACE pattern is projected it to predicted temperature.  

(Blackport and Screen 2020)

(Acosta Navarro et al., 2020)
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# Not including AO variation
# all indices are detrended and normalized
# r is correlation coefficient (parenthesis shows the observed value.)

p November SIA-BK
• Correlates to DJF temperature and surface heat 

flux in BK region.

• Preceding sea ice acts as a precursor for winter 
prediction for BK but not for remote regions.

p March SIA-BK
• Correlates to DJF T2m-CE and SLP-URAL.

• a result of winter atmospheric circulation.

Probability distributions of ensemble predictions 
(3,240 samples) for Lead-Lag BK sea ice conditions
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# Not including AO variation
# all indices are detrended and normalized
# r is correlation coefficient (parenthesis shows the observed value.)

p WACE-sea ice linkage
• closely corresponds to the local link between 

temperature and sea ice in BK.
(one center of dipole pattern action)

Ø The WACE index probably less reflects a remote 
link between sea ice and Eurasian temperature. 

For the WACE index…

Probability distributions of ensemble predictions 
(3,240 samples) for Lead-Lag BK sea ice conditions
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Conclusion

In the multiple seasonal prediction models….

p The measurable influence of sea ice anomalies on Eurasian winter 

temperatures is NOT found at least for the interannual variability.

p The actual benefit to prediction skill by representing the autumn sea ice’s 

remote link is unclear.

p WACE–sea ice link is probably not suitable for assessing the remote link 

between BK sea ice and Eurasian temperature.
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Influence of Eurasian Snow on surface temperature

A submonthly scale causal relation between snow cover and 
surface air temperature over the autumnal Eurasian continent

Komatsu, Takaya, et al. under review J. Clim.



11(Mariotti et al. 2018)

Land (Snow)-Atmosphere coupling

(Yasunari et al. 1991)

Albedo feedback Snow hydrological feedback

n Land-Atmosphere (L-A) coupling is regarded as a contributor to atmospheric predictability 
in sub-seasonal-to-seasonal (S2S) time scales.

n One of the most variant factors on the land surface is snow cover (SC).
SC can interact with the atmosphere via albedo feedback and hydrological feedback. 

n To advance our knowledge of atmospheric predictability, we should clarify when and 
where the impact of snow cover becomes significant.



n L-A coupling strength (Koster et al. 2006)

ü Need ensemble atmospheric model simulation with fully interactive 
land-surface (CNTL) and prescribed land condition (EXP). 

n Coupling index (Dirmeyre 2011 )

ü CI can be computed by observational dataset.
ü But CI does not quantify the causal chain from soil to precipitation.

(e.g., soil moisture => evaporation => precipitation)

12

Proposed metrics for evaluation of L-A coupling

(Dirmeyer 2011)

Ω ∶ Ensemble mean variance (e. g. , precipitation)Ω!"# − Ω$%&'

𝜎𝛽( σ: standard deviation e. g. , soil moisture
β!: linear regression slope e. g. , latent heat =lux

(Koster et al. 2006)

Hot spots for the coupling between soil 
moisture and precipitation (latent heat flux) 

Another indicator considering the cause and effect with 
time may be appropriate for evaluating the L-A coupling.
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Causality analysis based on the information theory 
n Liang-Kleeman information flow (Liang and Kleeman 2005, Liang 2014)

The information flow identifies the direction and magnitude of the cause-effect relationship.

Taking the time series of X1 and X2, the information flow from X2 to X1 (T2->1) is approximated by 

n Ideally, |T2->1| will be zero if X2 does not affect the time-evolution of X1.

Even in X2 correlates to X1(C12≠0), information flow possibly takes 0. 

Correlation does not always promise causation. |T2->1| ≠ 0 or 0 when C12≠0.

Causation imply correlation. C12≠0 when |T2->1| ≠ 0

We can use the information flow to reveal the causal direction even in two time series correlate heavily. 

𝐶!,#: sample covariance between 𝑖 and j
𝑑$: Euler forward difffential of X1| | | |
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ü Recent climate studies discuss whether a dipole-like snow pattern in 
November is a precursor of winter atmospheric circulation.

(Gastineau et al. 2017; Han and Sun 2018; Santolaria-Otín et al. 2021; Wegmann et al. 2021)

ü But remote and local atmosphere responses forced by such snow cover are 
not fully understood yet..

SC-SAT coupling in autumnal Eurasia

Han and Sun(2018)

Why focusing on autumnal Eurasian SC ?

n We demonstrate the information flow between SC and surface air temperature (SAT) 
in autumnal Eurasia.

n Obtained causality is verified by using atmospheric model experiment and forecast.

n We focus on the eastern and western parts of the continent in November. 



Sub-monthly scale causality between SC and SAT

15

Used weekly averaged SC (or Snow depth) and SAT in November during 2000~2019.

Obs (used SD)

Reanal

Correlation SAT->SC SC->SAT

* information flow is normalized following by Laing (2015). 

n SC and SAT strongly correlate in the 
whole Eurasia.
Low SAT is likely observed with high SC 
and vice versa.

n West Eurasia.
Large SAT->SC, insignificant SC->SAT.

SC hardly affects the time evolution of 
SAT.  (SC is not the cause of SAT)

n East Eurasia.
Insignificant SAT->SC, Large SC->SAT.

SC surely affects the time evolution of 
SAT. (SC is the cause of SAT)
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Seasonality of causality

SAT->SC

SC->SAT

SAT->SC

SC->SAT Coupling strength between SC and SAT
(Xu and Dirmeyer, 2011)

n Correlation (r2) between SC and SAT increases in autum and spiring at both regions.

n But, in autumn, the influence on SC on SAT is significant only in east Eurasia.

n In springtime, SC in both west and east Eurasia can affect SAT variation. It corresponds 
to the strong coupling of SC-SAT shown by Xu and Dirmeryer (2011). 

*Transparent lines sho statistically 
insignificant information flow.

*Here, information flows were computed 
by weekly data during one month 
initiated on each date. We used ERA5 
during 1980/81-2020/21.
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Causality and Predictability

20 years reforecasts by ECMWF operational 
forecast model were used.

Forecast skill
Interannual correlation between forecast and 
reanalysis.

The seasonal tendency of causality relates to the predictability of SAT.

n The forecast skill of SAT tends to persist for a long lead time during periods when SC is the 
cause of SAT.

n The autumnal coupling of SC-SAT is important for the forecast of SAT, at least of east Eurasia..

Forecast  skill
(SAT)

Skill  improved by  
SC-SAT coupling
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Conclusion
p Liang-Kleeman information flow revealed the cause-effect relation of the SC-SAT 

coupling, which is hidden behind the traditional correlation analysis.

p The atmospheric model response and seasonal dependency of forecast quality agreed 
with the causal relation inferred by the information flow analysis.

p East Eurasia is “hot spot” where SC certainly influence SAT, at least in autumn.

p The information flow can be easy to calculate only using two time series.
Thus, it may be a helpful approach to quantifying a local L-A coupling with 
considering causal directions.

p Comparing the degree of information flows of observation and numerical simulation 
may help to identify a deficiency of the land surface process in a model system.

Implications for future L-A coupling study



Japanese Multi-model Comparison of 
Seasonal Predictions

- Predicting Triple-dip La Nina episode -

Iwakiri et al. to be submitted
Iwakiri et al. in prep.



Cause of 1st to 2nd year La Niña in 2020-2022

MIROC6 captures 2nd year La Niña one year ahead.

予測可能性

PDF of ONDJF-mean N3.4
(Lead month ~13)

based on MIROC6’s 100-member extended seasonal hindcast

DJFMA(2020/2021)

Members characterized by broad spatial pattern successfully 
predict 2nd year La Niña (Iwakiri & Watanabe, 2022).



予測可能性Comparison among Japanese seasonal forecast models just started

ü MIROC6

ü MRI-ESM2.0

ü SINTEX-F2

ü JMA/MRI-CPS3

(Tatebe et al., 2019)

(Yukimoto et al., 2019)

(Doi et al., 2016)

(Hirahara et al., 2023)

Initial time of Nov. 2021

Ensemble size  : 10-member
Forecast length : 122 month

Ensemble size  : 10-member
Forecast length : 62 month

Ensemble size  : 12-member
Forecast length : 12 month

Ensemble size  : 10-member
Forecast length : 13 month

℃

MOVE-G2  MAM 2022 MRI-ESM2.0  lead month 5

MIROC6  lead month 5 SINTEX-F2  lead month 5

SST anomaly

Comparison of DCPP models is difficult due to the huge data size
→ A comparison project started in Japanese four models


