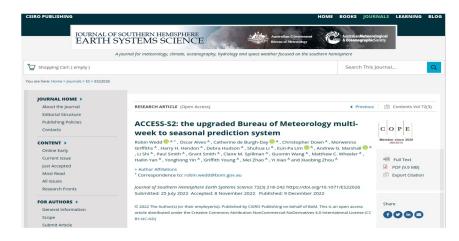


WGSIP24: Bureau of Meteorology research updates


Debbie Hudson

March 2023

ACCESS-S2

- Coupled model: UKMO GC2 (Global Coupled model vn2)
- BoM weakly-coupled data assimilation
- Hindcasts: 38 year (1981-2018)
- Run out to 8 months lead
- Operational Oct 2021

https://www.publish.csiro.au/ES/ES22026

Next version (ACCESS-S3) likely use UKMO GC5

• Starting to evaluate preliminary hindcasts

Atmospheric Model

GA6: Using UM8.6 (UM; Walters et al. 2017, Williams et al. 2015).

Horizontal resolution: N216 (~60 km in the mid-latitudes)

85 levels (extending into stratosphere)

Land Surface Model

GL6: JULES (Best et al. 2011; Walters et al. 2017)

4 soil levels

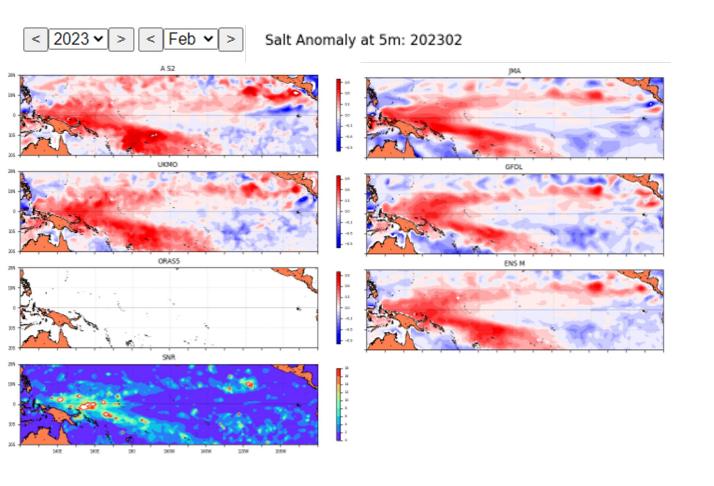
Ocean Model

GO5: NEMO3.4 (Madec 2008, Megann et al. 2014).

Horizontal resolution: 0.25°

75 levels. Level thicknesses range from 1m near the surface to about 200 m near the bottom (6000 m depth).

Sea Ice Model


GSI6.0: CICE (Hunke and Lipscomb 2010; Rae et al. 2015).

Coupler

Ocean Atmosphere Sea Ice Soil coupler version 3.0 (OASIS3, Valcke, 2013)

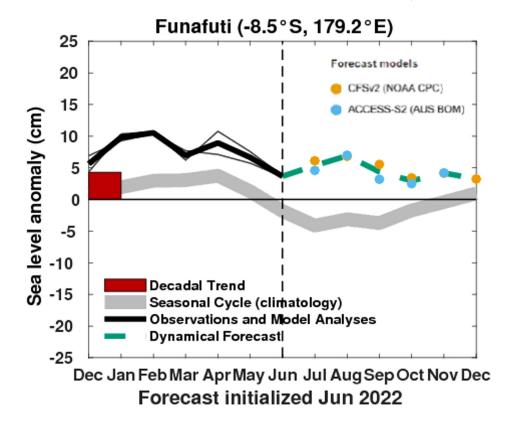
Contact: Debbie Hudson

ACCESS-S2 in international inter-comparisons

International Ocean Reanalysis Project (ORA-IP)

- ACCESS-S2 has been included in the ORA-IP international ocean reanalysis project.
- Bureau hosts the ORA-IP website for salinity. The website has been upgraded (http://poama.bom.gov.au/project/salinity/index.html)
- NCEP hosts the ORA-IP website for temperature (https://www.cpc.ncep.noaa.gov/products/GODAS/oce an briefing.shtml)
- Contact: Robin Wedd

S2S and Copernicus


- BOM (ACCESS-S2) recommencing contribution to S2S in coming 1-2 months
- Contribution to Copernicus to follow
- Contact: Claire Spillman

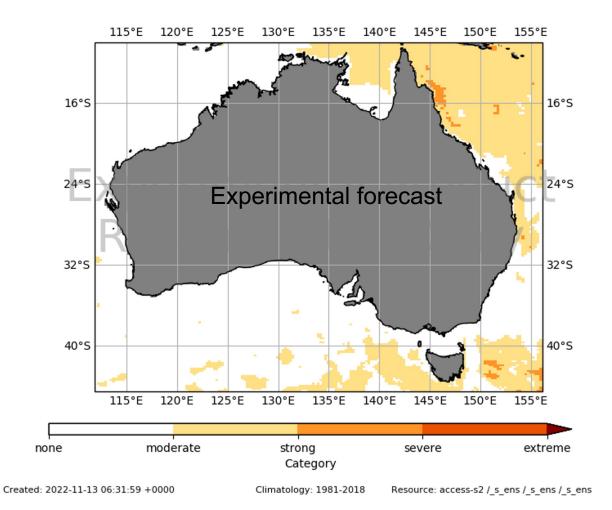
The Bureau of Meteorology 3

Seasonal sea level forecasts

- Combine seasonal sea level forecasts, tidal predictions, regional long-term trends & sea level rise estimates
- Bureau operational service planned under Australian Climate Service Program
- Leverage existing work in the Pacific:
 - COSPPAC (and PACCSAP) seasonal sea level outlooks
 - Uni Hawaii experimental multi-model forecasts
- Input to briefings for Defence via quarterly Global Seasonal Outlook

Trial marine heatwave forecasts

Monthly emn Marine Heatwave Category

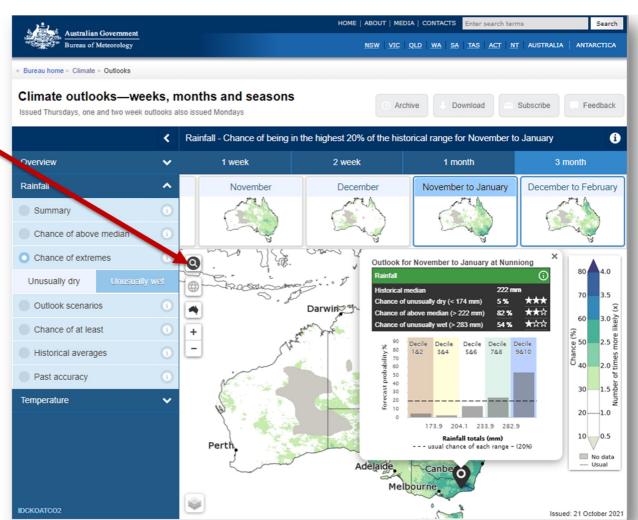

Region: Australia

Period: Month 01-Dec-2022 to 31-Dec-2022

Start: 11-Nov-2022


- Bureau-CSIRO research project
- Prototype seasonal MHW forecast products running in trial mode
- Plans to be operationalised
- Funded by Fisheries Research and Development Corporation


https://research.csiro.au/cor/research-domains/climate-impacts-adaptation/marine-heatwaves/dynamical-forecasting-of-marine-heatwaves/



The Bureau of Meteorology

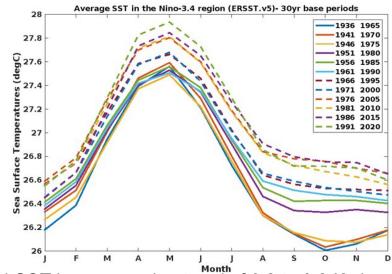
New operational outlook products

Indication of chance of "extremes"

http://www.bom.gov.au/research/projects/FWFA/

Some videos about the products:

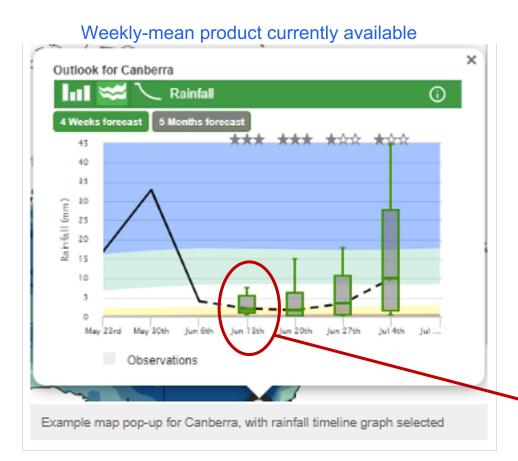
- Overview
- Beef case study
- Wine case study
- What is the Rainfall burst product
- How can you use the Rainfall burst forecast?
- Deciles and how you use them
- Probability of Exceedance product


Contact: Debbie Hudson

ENSO-IOD alert system for a warming world

- New project
- Workshop Aug 2022, with participation from BoM, NOAA, NIWA, NEA, Meteo France (New Caledonia), Monash Uni, CSIRO
- Will consider both the definition/indices of ENSO and IOD as well as the criteria for providing a "watch" and "alert"
- Seeking indices that are resilient to climate change e.g., relative Nino3.4 (Oldenborgh et al. 2021)
- For determining alerts, operational systems currently use some variant of Nino3.4 and consider current weather in some way (e.g., OLR, winds, SOI)

Centre	Threshold (K)	Smooth (months)	Clim period	Climate Change Adjust	Alert levels	Monitor IOD?
NOAA	0.5	3	Rolling for past, 1991-2020 present, updated every 5 <u>yrs</u>	Rolling climatology, unofficial monitoring of rN3.4	5	Informal
NEA	0.65	3	1976-2014	1962-2011 trend removed	5	planned
NIWA	0.7	3	1991-2020	Rolling climatology planned	7	No
MF-NC	informal	1	Unclear	No	n/a	No
BoM	0.8	1	1961-1990	Not yet	7	Yes



Nino 3.4 SST has a warming trend of 0.3 to 0.8 K since ~1940, depending on month (from Michelle L'Heureux; NOAA)

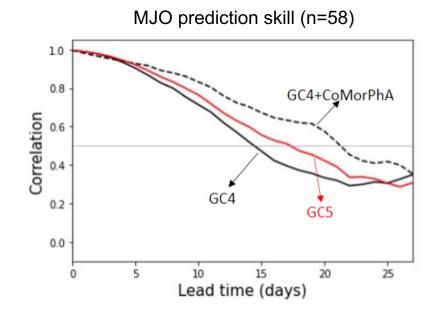
Contact: Matthew Wheeler

Statistically blending weather forecasts and S2S

- User feedback shows a strong preference for daily forecast beyond 7-day weather forecast.
- What can we do in the absence of an NWP model that runs to longer leads (> 7days)

New project to explore:

- How do we optimally blend/combine/post-process information from NWP and seasonal systems?
- How do we best communicate these forecasts so not misinterpreted
- Want to post-process calibrated ACCESS-S2 ensemble so that it is broadly consistent with ADFD (Australian Digital Forecast Database) forecasts – the weather forecast issued to the public
- Can we extend daily weather forecasts to lead days 8-14

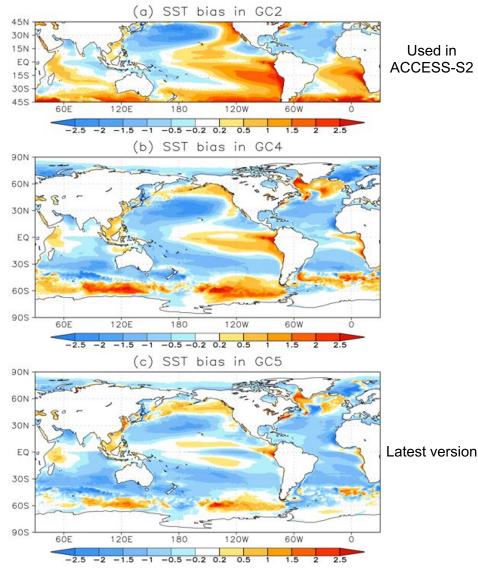

Week 1: incorporates NWP info

Towards future model configurations

Bureau research is aligned with Met Office cycle of development

Model development

- Developing a sea-breeze parameterisation
- Interactive vegetation representation in the model using ML
- Evaluation and testing of the new CoMorph convection scheme


Model evaluation and testing

Evaluating latest coupled model (GC5) for coupled NWP, S2S and seasonal prediction

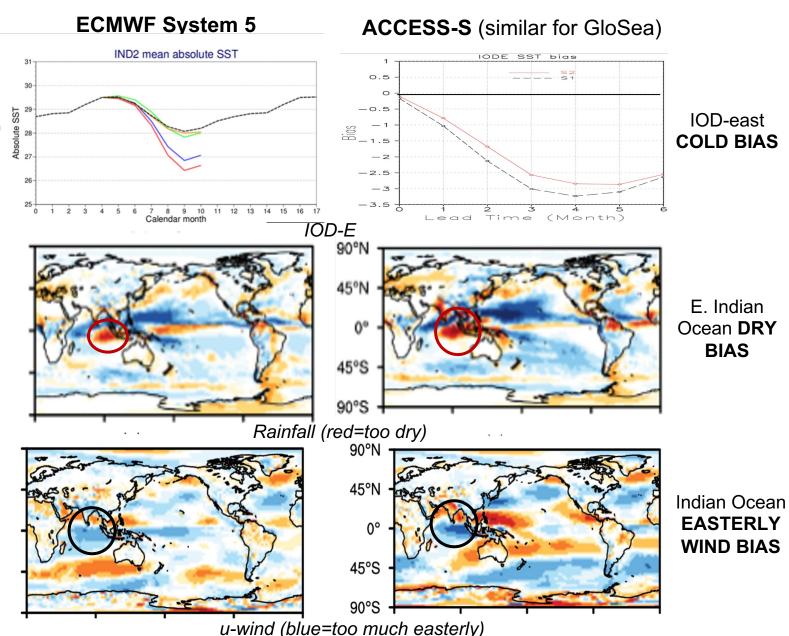
Zhu, H.; Hudson, D.; Li, C., Shi, L.; Young, G.; Stirling, A.; Whitall, M.; Lock, A.; Lavender, S.; Stratton, R. 2023. Impacts of the new UM convection scheme, CoMorph-A, over the Indo-Pacific and Australian regions. In review. To be submitted as a Bureau Research Report.

Li, C.; Hudson, D.; Zhou, X.; Zhu, H.; Wheeler, M.C.; Young, G.; Roberts, L.; Marzin, C. 2023. **Biases and teleconnections in GC5 – insights for seasonal prediction and Australia**. In review. To be submitted to Journal of Southern Hemisphere Earth Systems Science.

Coupled model versions 2, 4 and 5

Contact: Debbie Hudson

Evaluating and tackling persistent biases in the Indo-Pacific


Indo-Pacific Priority Evaluation Group (PEG)

Joint activity between UM Partners and ECMWF

Aims to tackle mean and variability errors which have an impact on teleconnections and forecast skill

Co-leads:

- Charline Marzin (Met Office)
- Debra Hudson; Matthew Wheeler (BoM)
- Magdalena Balmaseda (ECMWF)

Thank you

Debbie Hudson

Debbie.Hudson@bom.gov.au