Working Group on Subseasonal to Interdecadal Prediction 24th session
European Centre for Medium-Range Weather Forecasts
Reading, UK 27-29 March 2023

CSIR Climate Modeling Highlights

Asmerom F. Beraki
Principal Researcher (Climatologist): CSIR-Smart Places, Holistic Climate Change, Pretoria, South Africa
Extra-ordinary staff: University of Pretoria - Department of Geography, Geoinformatics and Meteorology, Pretoria, South Africa
CSIR Seamless Forecasting System

- CSIRO ESM: ocean (Thatcher et al. 2015), atmosphere (McGregor and Dix 2008), biosphere (Kowalczyk et al., 2013) and dynamic sea-ice (O’Farrell 2004) models (also described in Beraki et al., 2020)

- All model components cast on a cube-based grid and can be applied either at quasi-uniform horizontal resolution to function as a global climate model, or in stretched-grid mode to function as a high-resolution regional climate model.

- C-grid uniformity is computationally economical as it negates the need for grid type or resolution reconciliation in message exchange

- A prognostic aerosol scheme with anthropic GHG and O$_3$ forcings

- A dynamic river routing scheme adapted from the CSIRO Mk3.5 climate model.

- Seamless (temporal and spatial) capability

- Uses the CHPC computational facility
Model Skill
Application
Thank You!