

Recent work at CNRM on windows of opportunity at subseasonal time scales

Lauriane Batté WGSIP 23 – Open presentations

Two recent studies in the climate prediction team at CNRM focused on windows of opportunity at the sub-seasonal time scale.

- Flow-dependent predictability over Western Europe
- Model windows of opportunity for enhanced tropical rainfall

2m temperature correlation over Europe

- 12 J

Liberté Égalité Fraternité

RÉPUBLIQUE FRANÇAISE ¢

METEO FRANCE

Do the best forecasts coincide?

Scatter plot and PDF of ECMWF week 3 vs CNRM week 3 ACC with ERA5 (320 cases for DJFM 1997/98 – 2016/17).

Red dots mark the subset of significant ACCs (95% confidence level) for both systems (68 cases).

RÉPUBLIQUE FRANÇAISE

Initial weather regime frequency in these 68 cases vs 252 other cases

Week 3 correlation for strongest [NAO] ICs

0.9 0.25 (left) Gridpoint a) C) correlation of week 3 -0.8 0.2 *2m temperature with* ERA5 for the upper -0.15 -0.7 quartile (NAO+) and **CNRM** lower quartile (NAO-) -0.1 0.6 of initial NAO index values among -0.05 -0.5 forecasts initialized in -0.05 these two regimes. -0.4 b) d) (right) Difference in -0.3 -0.1 correlation with the -0.15 entire sample of -0.2 startdates **ECMWF** -0.1 -0.20.25

Ardilouze et al. (2021), WCD

- Performances (assessed by spatial correlation over Europe) of week 3 temperature forecasts are quite concurrent for ECMWF and CNRM S2S systems → common source(s) of subseasonal predictability
- Forecasts initialized in positive NAO phases tend to perform better than for 3 other "classic" weather regimes over the North Atlantic
- For the strongest NAO- and NAO+ initial conditions, skill is significantly improved in most of North West Europe

 \rightarrow Study published in Weather and Climate Dynamics:

Ardilouze C., Specq D., Batté L. and Cassou C. (2021) Flow-dependence of wintertime subseasonal prediction skill over Europe, Weather Clim. Dynam., 2, 1033–1049, https://doi.org/10.5194/wcd-2-1033-2021

Focus: weekly precipitation > 80th percentile MJO phases influence the base rate (observed frequency of the event)

Specq and Batté, in revision for ASL

Implementation with ECMWF S2S re-forecasts for NDJFMA

Specq and Batté, in revision for ASL

Simple contingency table approach to identify windows of opportunity related to teleconnections or large-scale variability modes acting as precursors

Increase in hit rate often undermined by larger false alarm rate \rightarrow Pierce Skill Score to quantify discrimination

 \rightarrow Study in revision for Atm. Sci. Lett.