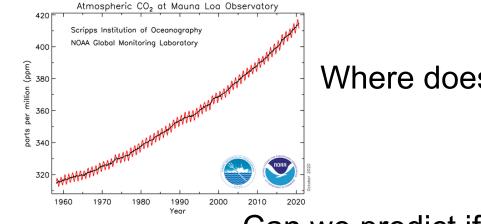
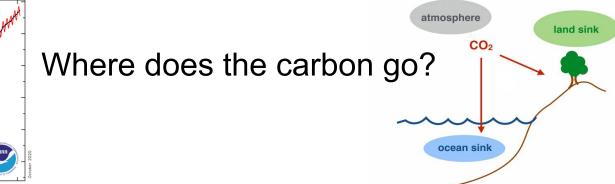
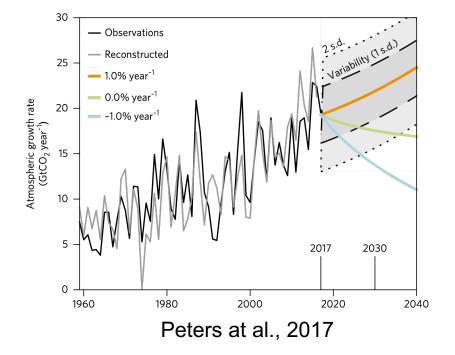
Predictable variations of the carbon sinks and atmospheric CO₂ growth in a multi-model framework

Tatiana Ilyina

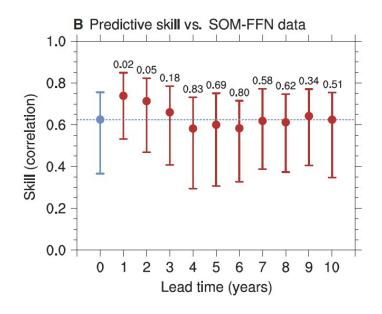

Hongmei Li, Aaron Spring, W. A. Müller, L. Bopp, M.O. Chikamoto, G. Danabasoglu, M. Dobrynin, J. Dunne, F. Fransner, P. Friedlingstein, W. Lee, N. S. Lovenduski, W.J. Merryfield, J. Mignot, J.Y. Park, R. Séférian,


R. Sospedra-Alfonso, M. Watanabe, S. Yeager

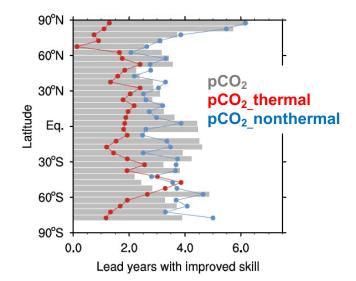
Max Planck Institute for Meteorology, Hamburg, Germany



/lax-Planck-Institut ür Meteorologie



Can we predict if atmospheric CO₂ changes slower or faster as expected from changes in emissions?

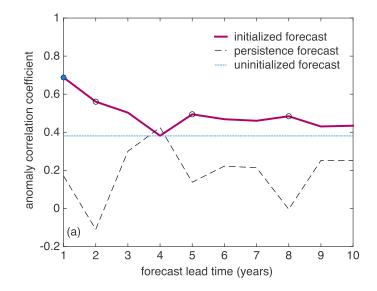


Evidence of predictability of the natural carbon sinks

Ocean C sink predictability is established in single models

The global ocean C sink is predictable for 2 years in hindcasts assessed vs. observations and for 3 years in idealized frameworks. Longer regional predictability is found.

Shorter-term <3 years (longer-term >3 years) predictability of the ocean C sink is maintained by the thermal (nonthermal) drivers.

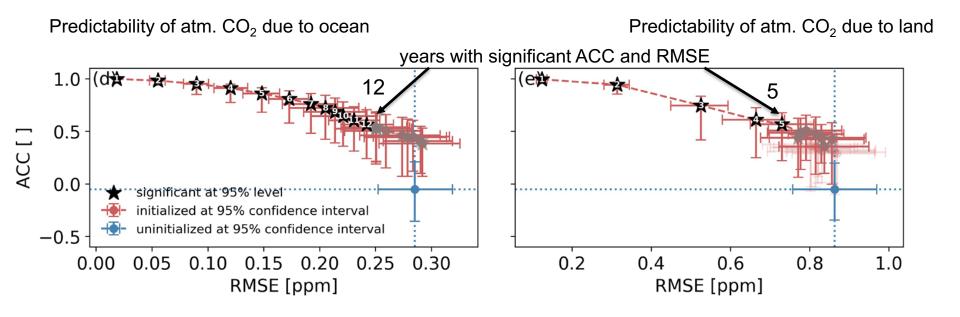

Hongmei Li at al., Science Advances 2019

Similar findings in other single model studies:

Séférian et al., 2018; Lovenduski et al., 2019; Fransner et al., 2020; Spring and Ilyina, 2020

Evidence of predictability of the natural carbon sinks

Less evidence for Land C sink predictability in single models


Up to 2 years potential predictability for terrestrial C flux. Assessement is challenged by the lack of suitable observational products.

Lovenduski et al. ERL 2019

Similar findings in the fewer other single model studies: e.g. Séférian et al., 2018; Spring and Ilyina, 2020; Zeng et al., 2008

If natural C sinks are predictable, can atmospheric CO₂ growth rate be predicted?

In a 'perfect model' framework, atm. CO₂ variations due to ocean only are predictable for 12 years and due to land only for 5 years. Terrestrial C sink limits atm. CO₂ predictability.

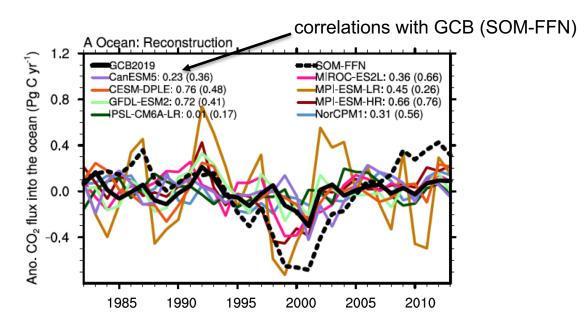
Spring and Ilyina, GRL 2020

Multi-model framework

Model	CanESM5	CESM-	GFDL-	IPSL-	MIROC-	MPI-ESM-	MPI-	NorCPM1
		DPLE	ESM2	CM6A-LR	ES2L	LR	ESM1.2-HR	
Resolu-	T63, 47 lev-	1.0°, 30 lev-	$2.5^{\circ} \text{ lon } 2.0^{\circ}$	$2.5^{\circ} x 1.3^{\circ},$	T42, 40 lev-	T63, 47 levels	T127, 95 lev-	$1.9 x 2.5^{\circ}, 26$
tion	els	els	lat, 24 levels	79 levels	els		els	levels
Atmo-								
sphere								
Resolu-	ORCA1, 45	$1^{\circ}, 60$ levels	$1^{\circ}, 50$ levels	$1^{\circ}, 75$ levels	Tripolar	$1.5^{\circ}, 40$ levels	$0.4^{\circ}, 40$ levels	$1^{\circ}, 51$ levels
tion	levels				$(\sim 1^{\circ}), 62$			
Ocean					levels			
Initiali-	ORAS5 3D	Ocean-sea-	GFDL's	EN4 SST	Full-field 3D	ORAS4 3D	ORAS4	EKF for
zation	T-S anoma-	ice forced	ECDA for	and At-	T-S	T-S anoma-	3D T-S	HadISST2
ocean	lies, SST	at the sur-	WOD, argo,	lantic SSS		lies	anomalies,	+ OISSTV2
	relaxed to	face with	SST				sea-ice con-	SST, EN4
	OISSTv2;	atmospheric					centration	T,S profiles
	sea-ice con-	states					anomalies	· -
	centration	and fluxes					from NSIDC	
	relaxed to	(modified						
	HadISST.2,	COREv2)						
	CMC	,						
	analysis;							
	thickness							
	assimilation							
Initiali-	ERA-40	CESM	GFDL's	N/A	JRA55 wind	ERA-40	ERA-40	N/A
zation	and ERA-	Large En-	ECDA with	,	and T; full	and ERA-	and ERA-	,
atmo-	Interim:	semble	NCEP-		field	Interim:	Interim:	
sphere	vorticity,		DOE re-			vorticity,	vorticity,	
-	divergence,		analysis			divergence,	divergence,	
	$\log(p)$, T;		2			$\log(p)$, T;	$\log(p)$, T;	
	full field					full field	full field	
Ensem-	20	40	12	10	10	10	10	20
ble size								
Start	1961-2017	1954-2015	1961-2017	1961-2014	1980-2017	1961-2014	1961-2014	1959-2017
years	yearly from	yearly from	yearly from	yearly from	yearly from	yearly from 1	yearly from 1	yearly from
Ť		1 Nov. for	1 Jan. for		1 Jan. for		Nov. for 10	15 Oct. for
	10 years	10 years	10 years		10 years	years	years	10 years
For-	cmip6	cmip5	cmip5	cmip6	cmip6	cmip5	cmip6	cmip6
cing				÷	-	-	-	÷
	~					~	• • • •	· ~ · · · ·

Table S1. Overview of prediction systems and initialization techniques.

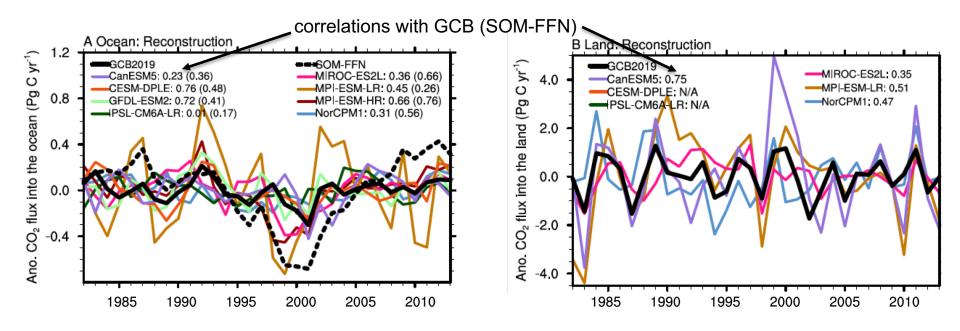
llyina et al. in review



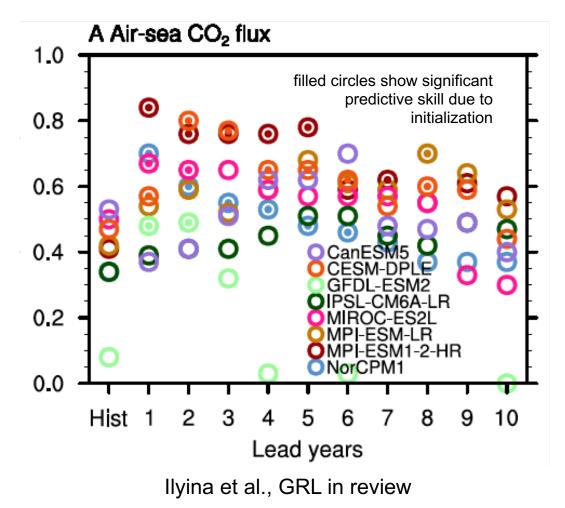
Multi-model framework

Model	CanESM5	CESM-	GFDL-	IPSL-	MIROC-	MPI-ESM-	MPI-	NorCPM1	8 ESMs
		DPLE	ESM2	CM6A-LR	ES2L	LR	ESM1.2-HR		
Resolu- tion Atmo- sphere	T63, 47 lev- els			2.5°x1.3°,		T63, 47 levels		1.9x2.5°, 26 levels	5 from CMIP6 3 fror CMIP5 Different designs
Resolu- tion Ocean	ORCA1, 45 levels	1°, 60 levels	1°, 50 levels	1°, 75 levels	$\begin{array}{l} \text{Tripolar} \\ (\sim 1^{\circ}), 62 \\ \text{levels} \end{array}$	$1.5^{\circ}, 40$ levels	$0.4^{\circ}, 40$ levels	1°, 51 levels	Different ensemble
Initiali- zation ocean	T-S anoma- lies, SST relaxed to OISSTv2; sea-ice con- centration relaxed to HadISST.2, CMC analysis;	ice forced at the sur- face with atmospheric states and fluxes	WOD, argo,	EN4 SST and At- lantic SSS	Full-field 3D T-S	ORAS4 3D T-S anoma- lies	ORAS4 3D T-S anomalies, sea-ice con- centration anomalies from NSIDC	EKF for HadISST2 + OISSTV2 SST, EN4 T,S profiles	size
Initiali- zation atmo- sphere	thickness assimilation ERA-40 and ERA- Interim: vorticity, divergence,	CESM Large En- semble	GFDL's ECDA with NCEP- DOE re- analysis	N/A	JRA55 wind and T; full field	ERA-40 and ERA- Interim: vorticity, divergence,	ERA-40 and ERA- Interim: vorticity, divergence,	N/A	Ilyina et al. in revie
	log(p), T; full field		2	10	10	log(p), T; full field	log(p), T; full field		
Ensem- ble size		40	12	10	10	10	10	20	
Start vears			1961-2017 yearly from 1 Jan. for 10 years		0 0	1961-2014 yearly from 1 Jan. for 10 years	1961-2014 yearly from 1 Nov. for 10 years		
For- cing	cmip6	cmip5	cmip5	cmip6	cmip6	cmip5	cmip6	cmip6	Climate-C Interactions Current Cerr

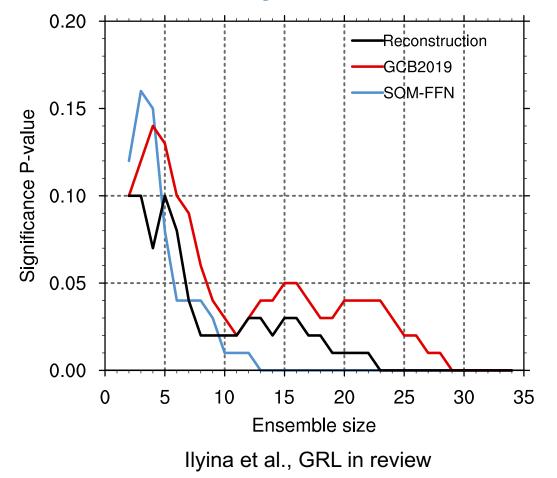
Multi-model reconstruction of carbon sinks


CO₂ flux reconstructions suggest stronger multi-year variations of the ocean and land carbon sinks.

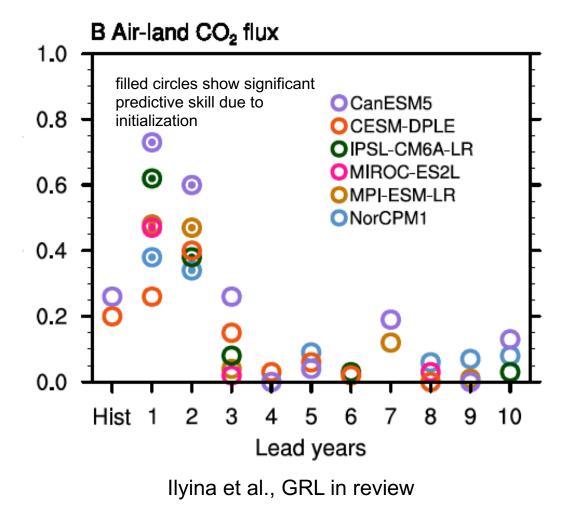
Ilyina et al., GRL in review

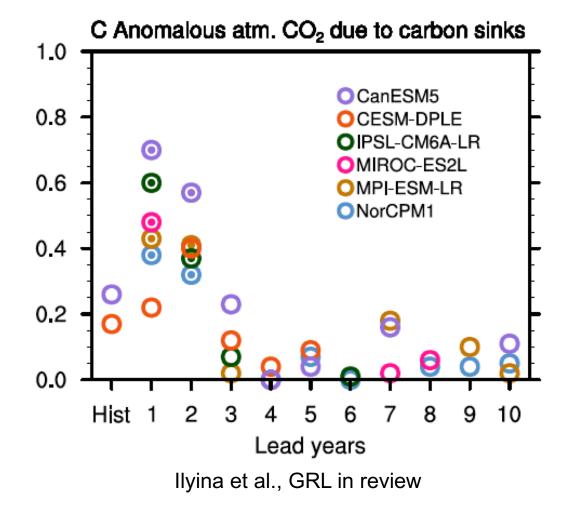

Multi-model reconstruction of carbon sinks

 CO_2 flux reconstructions suggest stronger multi-year variations of the ocean and land carbon sinks. Air-land CO_2 flux reconstructions outperform the uninitialized simulations in all models.



Ilyina et al., GRL in review


Predictive skill of the global ocean carbon sink due to initialization is up to 6 years, with longer up to 10 years regional predictability in single models.


Significance p-values evolve with ensembles size. As demonstrated for CESM-DPLE, a larger ensemble maintains the air-sea CO₂ flux predictive skill significance.

Predictive skill due to initialization for the land carbon sink of up to 2 years is primarily maintained in the tropics and extra-tropics.

Anomalies of atmospheric CO_2 growth rate are predictable up to 2 years and are limited by the land carbon sink predictability horizon.

What is next?

Until now carbon predictions have been based on concentration-driven simulations, atmospheric CO₂ variations were diagnosed.

Evidence of 2 years predictive skill of atmospheric CO₂ growth rate in simulations with prognostic atm. CO₂ (emission-driven)

Summary

- Reconstructions, in which the observations are assimilated into the ESMs, appropriately capture multi-year variations of the carbon sinks and atmospheric CO₂ growth rate.
- Global atmospheric CO₂ is predictable for 2 years in hindcasts and 3 years in the idealized framework. This predictability is mainly limited by land, as terrestrial CO₂ flux is predictable for 2 years and oceanic CO₂ flux is predictable up to 6 years.
- We demonstrate the feasibility of carbon cycle predictions in informing the Global Stocktake process with the most accurate estimates of near-term carbon cycle outlooks.