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Peters at al., 2017

Where does the carbon go?

Can we predict if atmospheric CO2
changes slower or faster as expected 

from changes in emissions?



Evidence of predictability of the natural carbon sinks

The global ocean C sink is predictable for 2 
years in hindcasts assessed vs. observations
and for 3 years in idealized frameworks. Longer 
regional predictability is found.

Hongmei Li at al., Science Advances 2019

Similar findings in other single model studies: 
Séférian et al., 2018; Lovenduski et al., 2019; Fransner et al., 2020; Spring and Ilyina, 2020  

pCO2
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Shorter-term <3 years (longer-term >3 
years) predictability of the ocean C sink is
maintained by the thermal (nonthermal) 
drivers.

Ocean C sink predictability is established in single models



Evidence of predictability of the natural carbon sinks

Lovenduski et al. ERL 2019

Similar findings in the fewer other single model studies: 
e.g. Séférian et al., 2018; Spring and Ilyina, 2020; Zeng et al., 2008 

Up to 2 years potential predictability for terrestrial
C flux. Assessement is challenged by the lack of
suitable observational products.

Less evidence for Land C sink predictability in single models

S1). The high predictability in the global integral is
present across much of the global land surface for
forecast lead year 1 (figure 3(a)). Two years following
initialization, the prediction system is still capable of
reproducing more than 30% of the variance in
globally-integrated NEP (figure 2(a)), with moderate
correlations across most of the global land surface
(figure 3(b)). Three years following initialization, we

findmoderate predictability in particular regions, such
as the eastern United States, southeastern China, and
western Europe (r∼0.4; figure 3(c)). As globally-
integratedNEP is a dominant contributor to variations
in the land-air CO2 flux and the atmospheric CO2

growth rate, our results suggest that the atmospheric
CO2 growth rate may be predictable up to two years in
advance. Further, the spatially resolved maps of

Figure 2. (a)Predictability of globally-integrated net ecosystemproduction as a function of lead time, as indicated by the correlation of
anomalies from the (pink)CESM-DPLE initialized forecast and the (blue)CESM-LE uninitialized forecast (ensemblemean of
members 1-33)withCESM-LEmember#34. The black dashed line indicates the correlation of the persistence forecast as a function
of lead time. Blue dots (black circles) on the initialized forecast indicate predictability that is statistically different from the uninitialized
(persistence) forecast at the 95% level using a z test. (b)Gain in predictability of initialized (green) gross primary production, (orange)
ecosystem respiration, (red) autotrophic respiration, and (yellow) heterotrophic respiration forecast over the corresponding
uninitialized forecast, as indicated by the difference in the anomaly correlation coefficients as a function of lead time.

Figure 3. (First row)Predictability of net ecosystemproduction, as indicated by the correlation coefficient of theCESM-DPLE
initialized forecast with CESM-LEmember#34. (Second row)The gain in predictability (difference in correlation coefficients) from
the initialized forecast relative to the persistence forecast. (Third row)The gain in predictability (difference of correlation coefficients)
from the initialized forecast relative to the uninitialized forecast. First column corresponds to forecast lead year 1, second column to
forecast lead year 2, and third column to forecast lead year 3.
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Figure 1. Comparison of the mean potential prediction skill of the initialized ensemble (red) versus random uninitialized ensembles (blue) in global annual
surface quantities of the carbon cycle with the anomaly correlation coefficient (ACC) on the y axis and root-mean-square-error (RMSE) on the x axis for lead
years represented as dots: (a) air-sea CO2 flux, (b) air-land CO2 flux, (c) prognostic surface atmospheric CO2, (d) diagnosed atmospheric CO2 based on oceanic
carbon sink, (e) diagnosed atmospheric CO2 based on the global terrestrial carbon sink, and (f) diagnosed atmospheric CO2 based on the global oceanic and
terrestrial carbon sink (see section 2.4). Error bars show 95% confidence intervals based on bootstrapping with replacement (N = 5,000). The last lead year with
a bootstrapped p value (which represents that uninitialized ensembles beat initialized ensembles) lower than 5% marks the predictability horizon. Black stars
with white integer denote significant lead years in ACC and RMSE, gray stars if only one metric is significant, and lead years nonsignificant in both metrics
are blurred.

ppm
2.12PgC (Ballantyne et al., 2012; Friedlingstein et al., 2019):

XCO2,atm,diag(t) = XCO2,atm(0) +
t∑
t′

CO2flux'(t′) · ppm
2.124PgC

whereXCO2,atm(0) is a free choice parameter of initial diagnosed atmospheric surface CO2 mixing ratio. This
approach assumes the atmosphere as one instantaneously mixed box and implicitly incorporates direct CO2
flux from land to ocean. Converting the sum of terrestrial and oceanic CO2 flux into diagnosed atmospheric
CO2 yields a very similar evolution as prognostic atmospheric CO2.

2.5. Variance-Weighted Mean Period
We infer potentially predictable regions from a single control simulation following Branstator and Teng
(2010). Accordingly, the variance-weighted mean period highlights regions with low-frequency variations
with longer potentially predictable periods:

Px =
∑

k
V(!k, x)∕

∑
k
!kV(!k, x),

whereV(f, x) is the variance per unit frequency for frequency f at location x and k are the individual
frequencies from the power spectrum.

3. Predictability of Air-Sea CO2 Flux
We first examine predictability of the global ocean carbon sink. Global annual air-sea CO2 flux is potentially
predictable for 2 and 4 years, when assessed with ACC and RMSE, respectively (Figure 1a). This means that
initialized ensembles predict each other significantly better due to initialization than uninitialized ensem-
bles. When assessing predictability with the same metric RMSE and predictability horizon definition as
Séférian et al. (2018), global air-sea CO2 flux predictability horizon in our model MPI-ESM-LR is comparable
to CNRM-ESM1 (for details see supporting information section S3.3).

On a regional scale longer predictability horizons are found. For instance, the North and Subtropical Atlantic
as well as the North and Subtropical Pacific have a predictability horizon of more than 6 years and thereby
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If natural C sinks are predictable, can atmospheric CO2
growth rate be predicted?

In a ‘perfect model’ framework, atm. CO2 variations due to ocean only 
are predictable for 12 years and due to land only for 5 years. 

Terrestrial C sink limits atm. CO2 predictability.

Spring and Ilyina, GRL 2020

12 5

Predictability of atm. CO2 due to ocean Predictability of atm. CO2 due to land 
years with significant ACC and RMSE 
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Table S1. Overview of prediction systems and initialization techniques.

Model CanESM5 CESM-
DPLE

GFDL-
ESM2

IPSL-
CM6A-LR

MIROC-
ES2L

MPI-ESM-
LR

MPI-
ESM1.2-HR

NorCPM1

Resolu-
tion
Atmo-
sphere

T63, 47 lev-
els

1.0�, 30 lev-
els

2.5� lon 2.0�

lat, 24 levels
2.5�x1.3�,
79 levels

T42, 40 lev-
els

T63, 47 levels T127, 95 lev-
els

1.9x2.5�, 26
levels

Resolu-
tion
Ocean

ORCA1, 45
levels

1�, 60 levels 1�, 50 levels 1�, 75 levels Tripolar
(⇠1�), 62
levels

1.5�, 40 levels 0.4�, 40 levels 1�, 51 levels

Initiali-
zation
ocean

ORAS5 3D
T-S anoma-
lies, SST
relaxed to
OISSTv2;
sea-ice con-
centration
relaxed to
HadISST.2,
CMC
analysis;
thickness
assimilation

Ocean-sea-
ice forced
at the sur-
face with
atmospheric
states
and fluxes
(modified
COREv2)

GFDL’s
ECDA for
WOD, argo,
SST

EN4 SST
and At-
lantic SSS

Full-field 3D
T-S

ORAS4 3D
T-S anoma-
lies

ORAS4
3D T-S
anomalies,
sea-ice con-
centration
anomalies
from NSIDC

EKF for
HadISST2
+ OISSTV2
SST, EN4
T,S profiles

Initiali-
zation
atmo-
sphere

ERA-40
and ERA-
Interim:
vorticity,
divergence,
log(p), T;
full field

CESM
Large En-
semble

GFDL’s
ECDA with
NCEP-
DOE re-
analysis
2

N/A JRA55 wind
and T; full
field

ERA-40
and ERA-
Interim:
vorticity,
divergence,
log(p), T;
full field

ERA-40
and ERA-
Interim:
vorticity,
divergence,
log(p), T;
full field

N/A

Ensem-
ble size

20 40 12 10 10 10 10 20

Start
years

1961-2017
yearly from
1 Jan. for
10 years

1954-2015
yearly from
1 Nov. for
10 years

1961-2017
yearly from
1 Jan. for
10 years

1961-2014
yearly from
1 Jan.

1980-2017
yearly from
1 Jan. for
10 years

1961-2014
yearly from 1
Jan. for 10
years

1961-2014
yearly from 1
Nov. for 10
years

1959-2017
yearly from
15 Oct. for
10 years

For-
cing

cmip6 cmip5 cmip5 cmip6 cmip6 cmip5 cmip6 cmip6

Refe-
rences

Swart et al.
(2019)

Yeager et al.
(2018)

Park et al.
(2018)

Boucher et
al. (2020)

Watanabe
et al. (2020)

Giorgetta et
al. (2013)

Mauritsen et
al. (2019)

(Counillon et
al., 2016)
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Multi-model framework

Ilyina et al. in review
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Table S1. Overview of prediction systems and initialization techniques.

Model CanESM5 CESM-
DPLE

GFDL-
ESM2

IPSL-
CM6A-LR

MIROC-
ES2L

MPI-ESM-
LR

MPI-
ESM1.2-HR

NorCPM1

Resolu-
tion
Atmo-
sphere

T63, 47 lev-
els

1.0�, 30 lev-
els

2.5� lon 2.0�

lat, 24 levels
2.5�x1.3�,
79 levels

T42, 40 lev-
els

T63, 47 levels T127, 95 lev-
els

1.9x2.5�, 26
levels

Resolu-
tion
Ocean

ORCA1, 45
levels

1�, 60 levels 1�, 50 levels 1�, 75 levels Tripolar
(⇠1�), 62
levels

1.5�, 40 levels 0.4�, 40 levels 1�, 51 levels

Initiali-
zation
ocean

ORAS5 3D
T-S anoma-
lies, SST
relaxed to
OISSTv2;
sea-ice con-
centration
relaxed to
HadISST.2,
CMC
analysis;
thickness
assimilation

Ocean-sea-
ice forced
at the sur-
face with
atmospheric
states
and fluxes
(modified
COREv2)

GFDL’s
ECDA for
WOD, argo,
SST

EN4 SST
and At-
lantic SSS

Full-field 3D
T-S

ORAS4 3D
T-S anoma-
lies

ORAS4
3D T-S
anomalies,
sea-ice con-
centration
anomalies
from NSIDC

EKF for
HadISST2
+ OISSTV2
SST, EN4
T,S profiles

Initiali-
zation
atmo-
sphere

ERA-40
and ERA-
Interim:
vorticity,
divergence,
log(p), T;
full field

CESM
Large En-
semble

GFDL’s
ECDA with
NCEP-
DOE re-
analysis
2

N/A JRA55 wind
and T; full
field

ERA-40
and ERA-
Interim:
vorticity,
divergence,
log(p), T;
full field

ERA-40
and ERA-
Interim:
vorticity,
divergence,
log(p), T;
full field

N/A

Ensem-
ble size

20 40 12 10 10 10 10 20

Start
years

1961-2017
yearly from
1 Jan. for
10 years

1954-2015
yearly from
1 Nov. for
10 years

1961-2017
yearly from
1 Jan. for
10 years

1961-2014
yearly from
1 Jan.

1980-2017
yearly from
1 Jan. for
10 years

1961-2014
yearly from 1
Jan. for 10
years

1961-2014
yearly from 1
Nov. for 10
years

1959-2017
yearly from
15 Oct. for
10 years

For-
cing

cmip6 cmip5 cmip5 cmip6 cmip6 cmip5 cmip6 cmip6

Refe-
rences

Swart et al.
(2019)

Yeager et al.
(2018)

Park et al.
(2018)

Boucher et
al. (2020)

Watanabe
et al. (2020)

Giorgetta et
al. (2013)

Mauritsen et
al. (2019)

(Counillon et
al., 2016)
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8 ESMs
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Ilyina et al. in review



Multi-model reconstruction of carbon sinks

CO2 flux reconstructions suggest stronger multi-year variations of the ocean 
and land carbon sinks. 

Ilyina et al., GRL in review

correlations with GCB (SOM-FFN)



Multi-model reconstruction of carbon sinks

CO2 flux reconstructions suggest stronger multi-year variations of the ocean 
and land carbon sinks. Air-land CO2 flux reconstructions outperform the 
uninitialized simulations in all models.

Ilyina et al., GRL in review

correlations with GCB (SOM-FFN)



Multi-model assessment

Predictive skill of the global ocean carbon sink due to initialization is up to 6 
years, with longer up to 10 years regional predictability in single models.

Ilyina et al., GRL in review

filled circles show significant 
predictive skill due to 

initialization



Multi-model assessment

Significance p-values evolve with ensembles size. As demonstrated for CESM-
DPLE, a larger ensemble maintains the air-sea CO2 flux predictive skill 

significance.

Ilyina et al., GRL in review

X - 20 :

Figure S2. Significance P-values of air-sea CO2 flux predictions evolving with ensemble size.

The significance of skill of CESM-DPLE air-sea CO2 flux predictions at lead time of 3 years

relative to the corresponding reconstruction simulation is shown in black. The colors indicate

results relative to di↵erent reference data, i.e. GCB (red) and SOM-FFN (blue).

September 4, 2020, 2:10pm



Multi-model assessment

Predictive skill due to initialization for the land carbon sink of up to 2 
years is primarily maintained in the tropics and extra-tropics. 

Ilyina et al., GRL in review

filled circles show significant 
predictive skill due to 
initialization



Multi-model assessment

Anomalies of atmospheric CO2 growth rate are predictable up to 2 
years and are limited by the land carbon sink predictability horizon. 

Ilyina et al., GRL in review



What is next?
Until now carbon predictions have been based on concentration-driven 

simulations, atmospheric CO2 variations were diagnosed.

Evidence of 2 years predictive skill of atmospheric CO2 growth rate in 
simulations with prognostic atm. CO2 (emission-driven)



Summary

§ Reconstructions, in which the observations are assimilated into the
ESMs, appropriately capture multi-year variations of the carbon sinks
and atmospheric CO2 growth rate. 

§ Global atmospheric CO2 is predictable for 2 years in hindcasts and 3 
years in the idealized framework. This predictability is mainly limited 
by land, as terrestrial CO2 flux is predictable for 2 years and oceanic
CO2 flux is predictable up to 6 years. 

§ We demonstrate the feasibility of carbon cycle predictions in 
informing the Global Stocktake process with the most accurate
estimates of near-term carbon cycle outlooks.


