WGSIP's Long-Range Forecast Transient Intercomparison Project

William Merryfield¹, Mikhail Tolstykh^{2,3}, Ramiro Saurral⁴, Woo-Sung Lee¹

¹Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada

² Institute of Numerical Mathematics, Russian Academy of Sciences

³ Hydrometcentre of Russia

Environment and Climate Change Canada

Environnement et Changement climatique Canada

Introduction

- LRFTIP is an initiative of WCRP's Working Group on Subseasonal to Interdecadal Prediction (WGSIP)
- Purpose is to enable multi-model inter-comparison studies of the transient behavior of coupled long-range forecast models evolving from observation-based initial conditions. (WMO defines long-range forecasting as from 30 days up to years.)

Objectives

- 1) Develop a **multi-model online archive** of hindcast climatologies and related diagnostics including systems contributing to S2S, CHFP, DCPP
- 2) Develop standard diagnostics characterizing forecast shock/drift
- 3) Address science questions, including
 - influence of different initialization methods on transient behavior of climate model components
 - identification of any impacts (likely negative) on climate forecast quality

Current Status

Models: The LRFTIP archive currently includes

- 4 subseasonal forecast models (S2S) → 6
- 19 seasonal forecast models (CHFP, ENSEMBLES) → 21
- 15 decadal forecast models (CMIP5, ENSEMBLES) → 16

Variables: Number of variables for each model, climate system component, and averaging interval are shown in tables

Updates since WGSIP 21

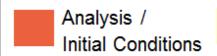
Reference	Forecasts
-----------	-----------

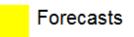
Subseasonal Model	Atn	nosph Daily	Ocean Daily				
ECCC-S2S	9	7	1	1			
ECMWF-S2S	11	7	1	1			
JMA-S2S	2	2	1	1			
MeteoFrance-S2S	11	7	1	1			
NCEP-S2S	11	7	1	1			
UKMO-S2S	6	4	1	1			

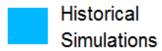
S2S data processed by Mikhail Tolstykh and Tatiana Krasjuk, INM-RAS

Current Status - Seasonal

Updates since WGSIP 21


Ref


Reference

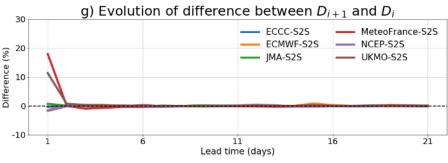

Forecasts

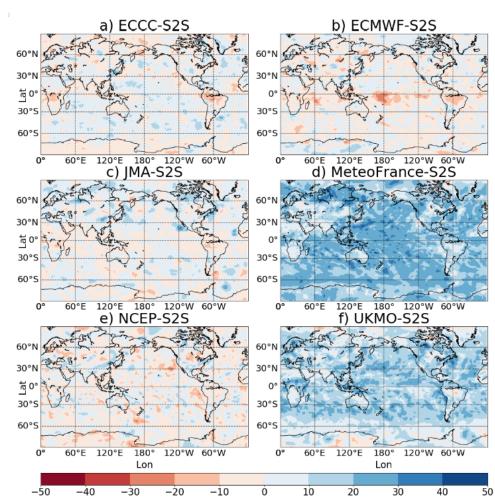
Seasonal Model		ospho Daily	ere	Atmosphere Monthly				Ocear Ionth	ı	Land Nonth	Sea Ice Monthly			
CanCM3	18	22		22	22		12	12		4	1	2		
CanCM4	18	22		22	22		12	12		4	1	2		
CanCM4i	21	26		22	26		11	13	2	3	1	2		
GEM-NEMO				12	12		1	1	1	1	1	1		
ECMWF-S4				18	20					1				
JMAMRI-CGCM1	12	16		20	20		6	7						
JMAMRI-CGCM2				19	21		6	6		13		13		
MIROC5_v1.0	12	18		16	18		6	7						
MPI-ESM-LR				20	22									
POAMA p24a/b/c				12	13									
ARPEGE				7	7									
CFS_SHFP	3	3		8	7									
CMAM	3	5		7	7					10		10		
GloSea4		1		7	7									
GloSea5		1		7	7									
ENSEMBLES (CMCC- INGV, ECMWF-S3, IFM- GEOMAR, MF, DePreSys, HadGEM2	16	20		20	20					1				

Current Status - Decadal

Decadal Model	Atmosphere Daily			Atmosphere Atmosphe Daily Monthly					nosp Yearl	here y				Ocean Yearly			Land Month/yearly			Sealce Month/Yearly		
CCSM4 (i1,i2)					24	24		24	24		8	9		8	9		3	3		2	2	
MF-ENSEMBLES					20			20			11			11			1					
CFSv2(i1,i2)					26			26			7			7			1			2		
CanCM4 (i1,i2)	25	16	6	25	26	17	25	26	17	13	13	13	13	13	13	4	3	2	2	2	2	
CNRM-CM5		6	6		26	26		26	26		10	10		10	10		3	3		2	2	
ECMWF-ENSEMBLES					20			20			11			11			1					
GFDL-CM2p1					18	18		18	18		11	11		11	11		2	2		2	2	
HadCM3		9	9		25	25		25	25		6	6		6	6		3	3		2	2	
IFM-ENSEMBLES					20			20			11			11			1					
MIROC5		20	20		26	26		26	26		7			7			3	3		2	2	
MRI-CGCM3		6			26			26			10			10			3			2		
UKMO-DePreSys-ENS					20			20									1					
UKMO-HadGEM2-ENS					20			20									1					
EC-EARTH					19	17		19	17		7	3		7	3					2	2	
BCC-CSM1.1		6	6		26	26		26	26		7	7		7	7					2	2	
CanESM5	21	21	21	26	26	26	26	26	26	11	11	11	11	11	11	3	3	3	2	2	2	

Recent activities


- EU H2020 project APPLICATE is using LRFTIP data to inform work package on the growth of systematic model error across time scales
 - → has brought to light inconsistencies in daily forecast vs reference data (instantaneous vs 24h mean)
- FTP data access updated to
 ftp://crd-data-donnees-rdc.ec.gc.ca/pub/CCCMA/bmerryfield/goapp/goapp/LRFTIP/


 (links to https://www.wcrp-climate.org/wgsip-projects)
- Saurral et al. overview paper in preparation

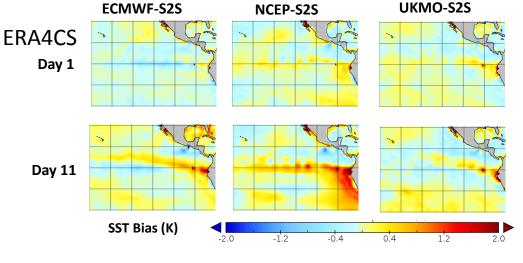
Initial shock in subseasonal predictions

Day 2 – Day 1 Total cloud cover in S2S hindcasts initialized in May \rightarrow

Successive differences in global mean Total cloud cover ↓

Saurral et al. in preparation

Thank you for attention!


Additional slides

(material presented for previous meetings)

This material was presented by Bill to recent JSC and S2S meetings:

- LRFTIP (shock and drift intercomparison) W. Merryfield, M. Tolstykh, R. Saurral
 - evaluating development of model systematic errors in >40 subseasonal, seasonal and decadal systems
 - database of hindcast & reference climatologies (linked to url below)
 - overview paper in preparation

Development of SST biases in days 1-11 of S2S forecasts initialized in November \rightarrow

Approach

- For a particular model and start date, hindcasts are averaged over available years and ensemble members to form a hindcast climatology
- When available, climatologies are also constructed for
 - Freely running model (e.g. CMIP historical simulations, averaging over multiple ensemble members)
 - Hindcast initial conditions = assimilating model run or analysis used for initialization, alternatively use observational reference dataset
- These represent "endpoints" of hindcast drifts, with differences from hindcast climatology indicating evolution away from initial conditions, toward model's own climate:

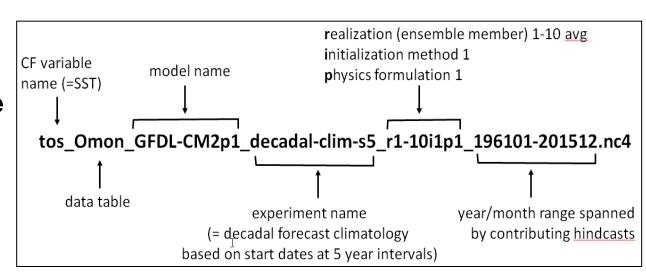
hindcast climatology
model climatology (historical simulation)

- Community input is invited and indeed sought, including
 - Suggestions for shock/drift diagnostics
 - Data contributions for models and/or initialization methods not in archive

Data Archive

Time scales represented for different forecast types

- Subseasonal: daily to 30/60 days

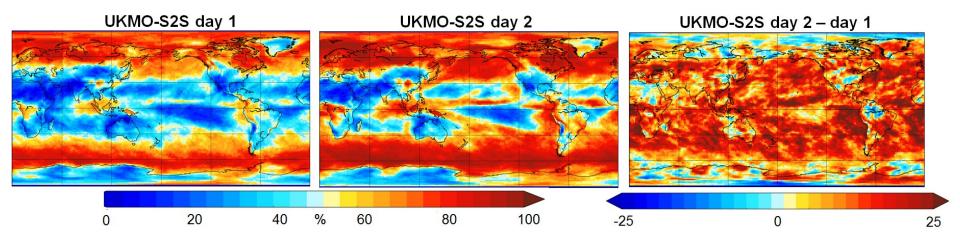

- Seasonal: daily to 30/60 days + monthly through forecast range

- Decadal: daily to 30/60 days + monthly/annual through forecast range

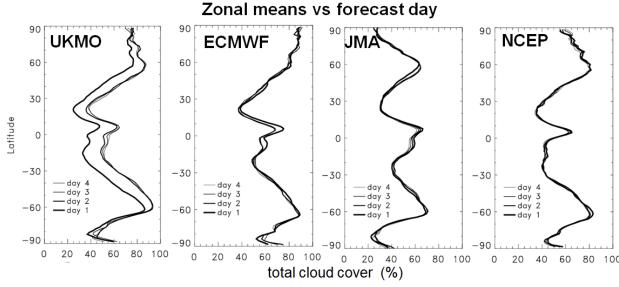
Data format

- CF-compliant NetCDF4
- Time variable=leadtime
- File names, directory tree guided by
 CMIP/ESGF

conventions

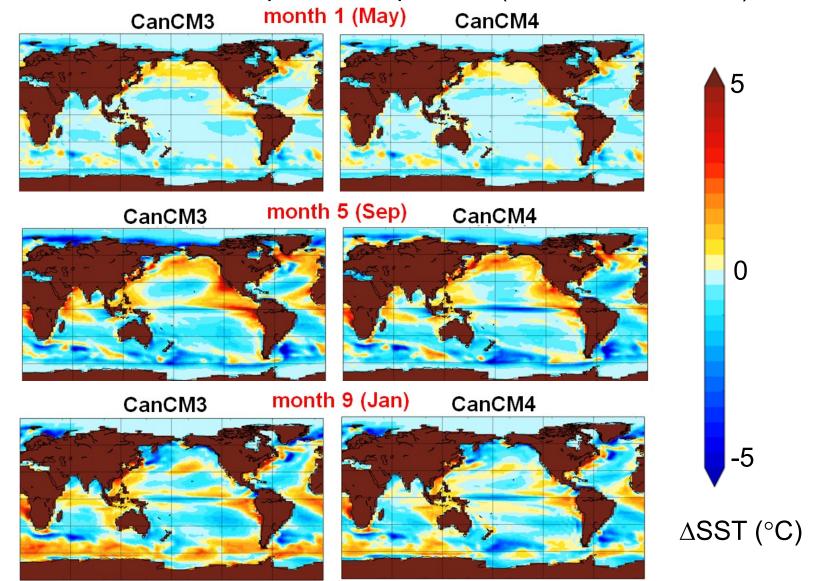


Data location: ftp://dapp2p.cccma.ec.gc.ca/pub/goapp/LRFTIP/

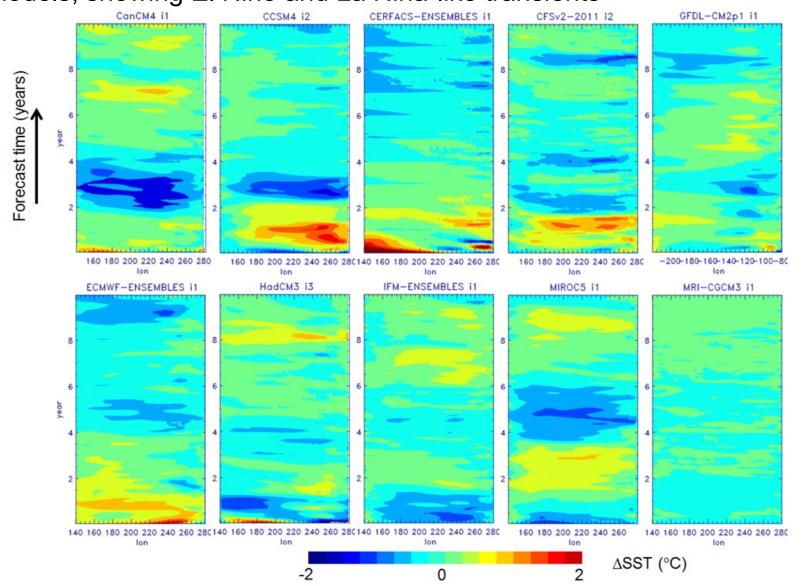

- Can be accessed from https://www.wcrp-climate.org/wgsip-projects/lrftip (web search "LRFTIP"), includes data specification document

Sample Diagnostics - Subseasonal

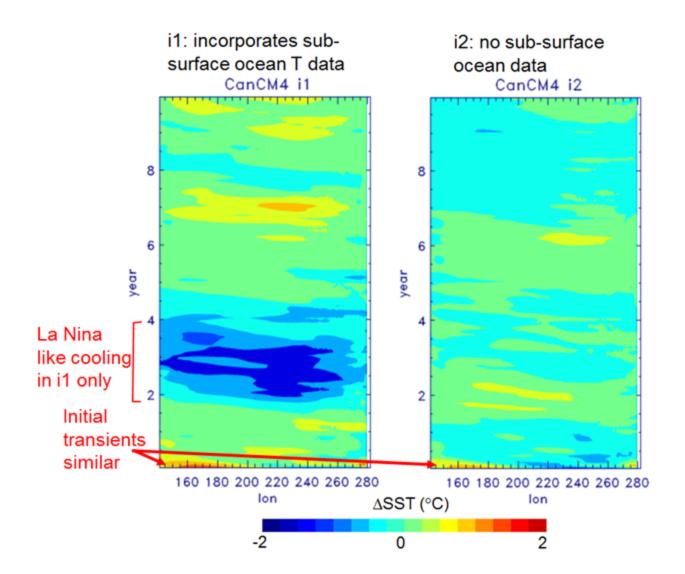
Total cloud cover in first days of hindcasts initialized near 1 Nov



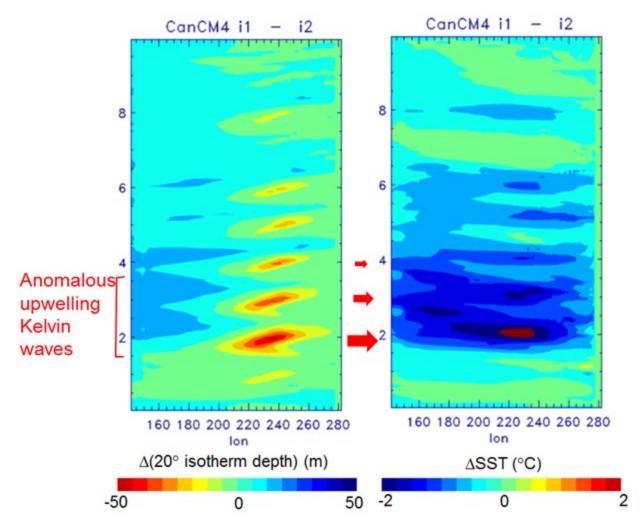
- UKMO model shows large transient relative to other models ↓
- Low initial cloud cover is a result of initializing UKMO model with ERA-Interim fields


Sample Diagnostics - Seasonal

 SST biases developing in hindcasts initialized 1 May in two models having same ocean, different atmospheric components (vs OISST reference)


Sample Diagnostics - Decadal

 Drift evolution of SST across equatorial Pacific in 10 decadal prediction models, showing El Niño and La Niña-like transients


Sample Diagnostics - Decadal

Same except for CanCM4 using two different ocean initialization methods:
 i1 includes subsurface data, i2 = surface initialization only

Sample Diagnostics - Decadal

 differences (i1–i2) in 20°C isotherm depth (left) and SST (right), showing La Niña-like transient excitation by anomalous upwelling Kelvin waves in years 2-6

