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Overview

• Differing treatments of radiative forcings in NWP and climate model-derived prediction 

systems, along with differing initialization methodologies, may cause long-term temperature 

trends to deviate from observed.

• Prediction systems may thus systematically over- or under-estimate temperatures in 

operational forecasts, even after mean biases during the hindcast period have been 

removed:
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Magnitude of deterministic biases

 Global temperature trend since 1980 ~0.2C/decade

(~0.3C/decade

over land)

30y 5y

20y 20y  0.2C/decade = 0.4C



Probabilistic forecast Impact: Example

Tercile temperature 

forecast for Victoria 

clim = 0.77C

fcst = 0.76C

deterministic

anomaly = 0.30C 

 0.39 clim

 examine impact of 

under-/overestimation 

of trend on tercile

probabilities



Probabilistic forecast impact: Example

Analytical result based on Gaussian statistics 
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forecast distribution
T anomaly*

fo
re

c
a

s
t 

b
ia

s
*

Bias in upper tercile probability (%)

51%  71% AN

51%  31% AN

Analytical result based on Gaussian statistics 



Weisheimer and Palmer (2014)

Probabilistic forecast impact: Example

Perfect reliability  no skill!

51% 71%31%



Results from seasonal hindcasts

Consider seasonal hindcasts from 

• DEMETER (7 models)

• ENSEMBLES (6 models)

• CHFP (11 models)

• ACCESS-S (GPC Melbourne)

For each model, evaluate differences from observed trends, considering

• 3 observational products (HadCRUT, NOAA, Berkeley)

• as functions of initial month and lead time

• global, land, ocean 

• for available hindcast periods



DEMETER and ENSEMBLES

A S O N D J A S O N D J F

• Global trends in C/decade

• August initialization (e.g.)

• 1980-2001 (DEMETER), 1981-2005 (ENSEMBLES)

HadCRUT

NOAA

Berkeley

Other line types: Models

 most systems underestimate by up to 0.2 C/decade, one overestimates

Observed:



CHFP

• Trend differences in C/decade

• Consider common 1981-2020 hindcast period

HadCRUT

NOAA

Berkeley

Glob LandOcean

CCCma-CanCM3 CCCma-CanCM4 JMAMRI-CGCM1 JMAMRI-CGCM2 MIROC5-v1.0

 May initialization

 Dec initialization

lead time (months)
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ACCESS-S

• Current GPC-Melbourne system

• Similarities to GloSea5

• 1990-2012 hindcast period

May initialization Dec initialization

HadCRUT

NOAA

Berkeley

Glob LandOcean



Conclusions so far

• Temperature trend biases are particularly problematic for operational systems 

with long hindcast periods

• Trend errors of plausible magnitude can seriously bias tercile probabilities, 

degrade probabilistic skill

• Global/land/ocean trends evaluated for 25 models vs 3 observational products

• Seasonal hindcasts from older systems (ca. 2010 and earlier) tend to seriously 

underestimate trends, especially over land  anthropogenic forcings mis- or 

unrepresented?

• Trend errors in currently operational systems tend to be smaller, but may still 

affect skill and reliability of real time forecasts 



Extra slides



Objectives

• Assess long-term global and regional temperature trends as a function of lead 

time in hindcasts across many seasonal prediction systems

• Assess extent to which deficiencies in representing long-term temperature trends 

impact temperature prediction skill

• Attempt to relate representation of trends to radiative forcing and initialization 

methodologies employed

• Develop standard diagnostics for temperature trends in hindcasts

• Journal publications and meeting presentations communicating improved 

knowledge on this topic, synthesizing with previous results



CHFP

• Trend ratios (model/obs)

• Consider common 1981-2020 hindcast period

CCCma-CanCM3 CCCma-CanCM4* JMAMRI-CGCM1 JMAMRI-CGCM2* MIROC5-v1.0

 May initialization

 Dec initialization

lead time (months)
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1.5

2.0

0.5

0

1.0
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Some previous results

Liniger et al. (2007)         ECMWF Sys 2 / DEMETER w/ & w/o GHG forcing 



Some previous results

Krakauer (2019)
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