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Overview

 Differing treatments of radiative forcings in NWP and climate model-derived prediction
systems, along with differing initialization methodologies, may cause long-term temperature
trends to deviate from observed.

» Prediction systems may thus systematically over- or under-estimate temperatures in
operational forecasts, even after mean biases during the hindcast period have been
removed:
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Magnitude of deterministic biases
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Probabilistic forecast Impact: Example
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Probabilistic forecast impact: Example
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Probabilistic forecast impact: Example

Analytical result based on Gaussian statistics
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Probabilistic forecast impact: Example

10 31% 51% 71%
| — Belnwﬂnnnqli

Mear Momnal |
0.9 — Above Nomd!

=
-..‘I

o
o)

Perfect reliability — no skill!

=
(4

BSS>0

=
$u

perfect reliability —

Observed Frequency

o
(A

- climatology —»

0.0 :
00 01 02 03 04 05 06 0.7 08 09 1.0

Forecast Probability

BSS>0

Weisheimer and Palmer (2014)



Results from seasonal hindcasts

Consider seasonal hindcasts from
« DEMETER (7 models)

« ENSEMBLES (6 models)

« CHFP (11 models)

« ACCESS-S (GPC Melbourne)

For each model, evaluate differences from observed trends, considering
« 3 observational products (HadCRUT, NOAA, Berkeley)

 as functions of initial month and lead time

* global, land, ocean

« for available hindcast periods



DEMETER and ENSEMBLES

 Global trends in °C/decade Observed:
HadCRUT

« August initialization (e.g.) — NOAA
Berkeley

« 1980-2001 (DEMETER), 1981-2005 (ENSEMBLEYS) Other line types: Models

ENSEMBLES models initial month=08 1981-2005

DEMETER meodels initial menth=08 1980—-2001
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— most systems underestimate by up to 0.2 °C/decade, one overestimates
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 Trend differences in °C/decade

« Consider common 1981-2020 hindcast period
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ACCESS—S — observed T2m trend
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Conclusions so far

Temperature trend biases are particularly problematic for operational systems
with long hindcast periods

Trend errors of plausible magnitude can seriously bias tercile probabilities,
degrade probabilistic skill

Global/land/ocean trends evaluated for 25 models vs 3 observational products
Seasonal hindcasts from older systems (ca. 2010 and earlier) tend to seriously
underestimate trends, especially over land — anthropogenic forcings mis- or

unrepresented?

Trend errors in currently operational systems tend to be smaller, but may still
affect skill and reliability of real time forecasts
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ODbjectives

Assess long-term global and regional temperature trends as a function of lead
time in hindcasts across many seasonal prediction systems

Assess extent to which deficiencies in representing long-term temperature trends
impact temperature prediction skill

Attempt to relate representation of trends to radiative forcing and initialization
methodologies employed

Develop standard diagnostics for temperature trends in hindcasts

Journal publications and meeting presentations communicating improved
knowledge on this topic, synthesizing with previous results
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Some previous results

Liniger et al. (2007) ECMWF Sys 2 / DEMETER w/ & w/o GHG forcing
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Figure 2. Linear trends of monthly T2 over 1958-2001 in K/decade. Shown are all months of OBS (green, dotted) and
corresponding lead months of CONST (red, solid) and INC (blue, long dashed) for (a) global mean, (b) Northern
Hemisphere, (c) Southern Hemisphere, and (d) Tropics. The squares in the lower part of the panels indicate significant
differences of the trends between CONST and INC (upper row), CONST and OBS (middle row) and CONST and INC
(lower row) at a 95%-level.



Some previous results

Krakauer (2019)

Fig. 1 Global (surface air
temperature over land) warm-
ing rate of NMME model and
multimodel mean temperature
forecasts for 1982-2015, as a
function of forecast lag. The
warming rate based on observa-
tions (BEST) is also shown for
reference
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