DCPP Progress, achievements and plans

Jon Robson and Steve Yeager (DCPP Co-Chairs)

With thanks to Wolfgang Müller

Overview

- DCPP what is it, and what is the status of experiments
- Science highlights from DCPP-A and DCPP-C
- Future plans for DCPP, including links to WCRP strategy and implementation

The need for decadal climate predictions

- Over the upcoming decade we want to understand and predict:
 - How regional climates may change
 - How underlying risk changes
- Near-term predictions needed to support
 - Global Framework for Climate services
 - UN sustainable Development Goals
 - Sendai Framework for disaster Risk reduction

Merryfield et al, 2010, BAMS

DCPP CMIP6 experiments and progress

- DCPP is a CMIP6 endorsed MIP split into three "components"
- **DCPP-A:** co-ordinated multi-model hindcasts
 - Baseline experiments for assessing skill and mechanisms
- **DCPP-B:** real-time quasi-operational predictions

CMIP6 experiments	Number of models (currently)
DCPP-A	
hindcasts from 1960-2016	10
DCPP-B	
predictions initialised every year	1

DCPP-C: Hypothesis testing and process exploring experiments

- Hiatus+
 - Idealised AMV and IPV experiments
 - Atlantic and Pacific Pace-maker experiments
- Volcano
 - Repeated hindcasts with volcanoes removed (i.e Pinatubo)
- Atlantic gyre experiments
 - Initialise Atlantic subpolar gyre from climatology in 1990s

Boer et al, 2016, GMD

DCPP-A: North Atlantic Climate more predictable than models imply

- Significant skill in 2-9 year NAO found in unprecedently large ensemble using DCPP predictions from CMIP5 and CMIP6
- Calibration of output can be used to provide useful predictions

Recent advances in predicting biogeochemistry

Ilyina et al, submitted

- Growing understanding of skill (or potential skill) in:
 - Air-sea CO2 flux
 - Ocean acidification (Brady et al, 2020)
 - Net primary productivity (Krumhardt et al, 2020)

DCPP-C: Impact of AMV on global climate

- DCPP-C idealised AMV experimental protocol has generated a range of studies, including on
 - Impact on the Pacific Decadal Variability
 - Atlantic atmospheric jet in winter
 - Global monsoons (Monerie et al, 2019)
 - Other studies in progress, including on hurricanes and impact on Europe

Future plans for DCPP

- DCPP's primary mission is to define coordinated, multi-model experiments that advance decadal prediction science.
- But there is more room for coordination on multi-model analysis and forward-looking new science opportunities.
 - DCPP could develop new protocols for multi-model experiments
 - E.g. COVID impact on near-term climate, geoengineering, prediction strategies (initialisation, 30-year predictions etc)?

DCPP, WCRP strategy, and lighthouse activities

• DCPP helps to address all four of WCRP's main objectives

- Fundamental understanding and predictability are central to DCPP, model development is a key opportunity, providing a bridge to society (through partners).
- Signal-to-noise issues are key example of how predictions provide something complementary to traditional climate modelling approaches.
- For DCPP, International collaboration is key to develop new understanding no one centre can produce 600+ member predictions
- Potentially strong overlaps with Lighthouse activities
 - Especially 'Explaining and Predicting Earth System Change' but also 'My Climate Risk'
 - Co-ordination of underpinning datasets (i.e. hindcasts) and co-ordinated hypothesis testing experiments.