GPC-Washington Overview

Arun Kumar Climate Prediction Center arun.kumar@noaa.gov

Long-Range Forecast System

- Coupled Model
 - Made operational March 2011
 - Atmospheric model: T126/L64 (~1 Deg lat/lon)
 - Ocean model: MOM4 (0.5 Deg lat/lon)
- Initialization
 - Climate Forecast system reanalysis (CFSR)
 - Atmosphere
 - Land
 - Ocean
- No immediate plans for a system update

Real-time Forecast Configuration

- Forecasts done in a continuous mode
- A suite of extended-range forecasts each day
 - Four 9-month lead forecasts/day
 - Four 120 day lead forecasts/day
 - Sixteen 45 day lead forecasts/day

Hindcast Configuration

- Seasonal
 - Four 9-month lead forecasts every 5th day of calendar month
 - 1981-2010
- Monthly/Sub-seasonal
 - Four 45-day lead forecasts everyday of calendar month
 - 1999-2010
- Effective hindcast (for research and analysis)
 - Seasonal: 1981-present
 - Monthly/Sub-seasonal: 1999-present

Data Availability

- 7-day rotating archive for real-time forecasts
- Hindcasts available via various sources
 - NCEP
 - NCDC/NCEI
 - IRI
 - S2S database at ECMWF
- Real-time forecast data sent to
 - Seasonal: Lead Center for Long-Range Forecasts
 - Monthly: ECMWF S2S

Some Research Highlights

Improving sea-ice predictions

2011

Some Research Highlights

- Tropical Pacific observing system and influence on ENSO prediction
- Low-frequency variability in ENSO
- Understanding recent increase in AO/NAO prediction skill
- Developing an experimental predictions for Week3 and Week 4 surface temperature and precipitation over the U.S.
- Causes and understanding of California drought

Research Issues

 Understanding limits of predictability and managing expectations

Some Research Issues

- Causes for low-frequency variability in skill (ENSO, AO/NAO,...)
- Predictability of (or anticipating) low-frequency variations
- Predictability of sub-seasonal extremes
- Given limited resources, guidance on which developmental pathways (hindcast length, ensemble size, more resolution, forecast configuration strategies,...) are most beneficial for improvements in skill?

North American Multi-Model Ensemble (NMME)

http://www.cpc.ncep.noaa.gov/products/NMME/

Thanks to Dr. Jin Huang

Contributing Models

Model	Hindcast	No. of	Arrangement of	Lead	Model resolution	Model resolution	Reference
	Period	Members	Members	(month)	(atmos)	(ocean)	
Active							
NCEP/CFSv2	1982-2010	24 (28)	4 members (0,	0-9	T126L64	MOM4L40 .25deg	Saha et al
			6, 12, 18z) every 5 th day			Eq	(2010)
GFDL/CM2.1	1982-2010	10	All 1 st of the	0-11	2x2.5degL24	MOM4L50 .3deg	Delworth
	1000	0.4		0.11	0401.00	Eq	(2006)
GFDL/CM2.5	1982-	24	All 1 st of the	0-11	(50km)		vecchi et al
(FLOR)	present		month 02		(50KM)	deg Eq 1degPolar1.5	(2014)
CMC1-CanCM3	1981-2010	10	All 1 st of the	0-11	CanAM3 T63L31	CanOM4L40	Merryfield et al
			month 0Z			.94deg Eq	(2013)
CMC1-CanCM4	1981-2010	10	All 1 st of the	0-11	CanAM4 T63L35	CanOM4L40	Merryfield et al
			month 0Z			.94deg Eq	(2013)
NCAR/CCSM4	1982-2010	10	All 1 st of the	0-11	0.9x1.25degL26	POPL60	Kirtman et al.
			month 0Z			.25deg Eq	(in prep)
NASA/GEOS5	1981-2010	11	4 mems every 5	0-9	1x1.25 deg L72	MOM4L40 .25deg	Vernieres et al
			days; 7 mems			Eq	(2012)
			on last day of				
			last month				
Retired							
NCEP/CFSv1	1982-2009	15	1 st 0Z +/-2 days,	0-8	T62L64	MOM3L40 0.30	Saha et al
			21 st 0z +/-2d,			deq Eq	(2006)
			11 th 0z +/-2d				
NCAR/CCSM3	1982-2010	6	All 1 st of the	0-11	T85L26	POPL42	Kirtman and
			month 0Z			0.3deg Eq	Min2009)
IRI-ECHAM4f	1982-2010	12	All 1 st of the	0-7	T42L19	MOM3L25(1.5x0.	DeWitt (2005)
			month 0Z			5)	
IRI-ECHAM4a	1982-2010	12	All 1 st of the	0-7	T42L19	MOM3L25	DeWitt (2005)
			month 0Z			(1.5x0.5)	
Planned							
NCAR/CESM1	1982-2010	10	All 1 st of the	0-11	0.9x1.25degL30	POPL60	Tribbia et al.
			month 0Z			.25deg Eq	

NMME graphical products

NMME Data Available to Public

- 1. Realtime forecasts from CPC website
 - <u>http://www.cpc.ncep.noaa.gov/products/NMME/</u>
- 2. Phase-I Reforecast data in IRI website available now
 - Monthly Mean of 30 year reforecast
 - 8 variables (P, T, SST, Z200, Tmax, Tmin Soil Moisture, Runoff)
 - http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
- 3. Phase-II Reforecast data in NCAR
 - Data available starting July 2014, October 2014 for complete set
 - Selected (22) daily atmospheric and land variables
 - Daily atmospheric pressure level fields (5)
 - Monthly seas ice and ocean fields (9)
 - https://www.earthsystemgrid.org/search.html?Project=NMME

Currently over 250 subscribers of the NMME mailing list: 20% from the private sector, 27% academic, 14% NOAA, 16% from international, meteorological services , 23% others.

NMME – Key Achievements

- Contributing experimentally to NOAA operational seasonal outlooks since 2011
- Most comprehensive seasonal prediction data set accessible to the public
- Enabling prediction and predictability research and informing and benefiting from model improvement (~50 publications)
- The diversity of models in NMME enhances seasonal prediction skill, beyond individual model forecasts

NMME-based ENSO Plume: Forecasts of Nino 3.4 SST Anomalies, initiated in June 2015 (Courtesy of COLA)

NMME Improves Forecast Reliability

NMME increases forecast reliability due to both ensemble size and model diversity.

NMME Sub-seasonal Forecast System Exploratory Workshop NCWCP, College Park, MD March 30–31, 2015

Workshop Purpose:

- To explore scientific opportunities and feasibility to evolve the current NMME seasonal forecast system to enable sub-seasonal forecasts
- To design a coordinated reforecast protocol for a potential NMME subseasonal forecast system
- To assess operational and stakeholder needs for future testing and implementation

Workshop Participants

• US Agencies:

NOAA, NASA, Navy, Air Force

- International:
 - Environment Canada, ECMWF, UK Met Office, Korea/APCC
- Universities
- US/NRC S2S Study members

NMME Sub-seasonal Forecast System Exploratory Workshop – Presentations/Discussions

Key scientific questions and opportunities:

- WCRP/WWRP S2S project:
 - Useful dataset, but 3-weeks embargoing won't meet real-time multi-model needs
 - S2S models don't follow the same protocol.
- Sub-seasonal predictability and prediction opportunities
 - o Land-atmospheric interaction
 - o Stratosphere-troposphere interaction
 - o MJO-NAO coupling
 - Air-sea interaction (not presented)
 - Spatial resolution of atmospheric models is critical

Assessments of community needs (what's critical vs negotiable, what's the feasibility,)

- Overview of needs
 - o Operational
 - o Research community
 - Other Applications
- Technical Needs
 - o Data frequency
 - o Data variables
 - o Resolution
 - o Data transfer
 - Case studies
 - o Bench marks

Workshop Outcome: Experimental Sub-seasonal Forecast Protocol

 General Requirements: Reforecasts: minimum 1999-2015 Ensemble members: minimum 4 Models and procedures including initial conditions for real-time forecasts and reforecasts should be the same Forecast Length: minimum of 32 days. One-year of real-time forecasts is required 	 Requirements Specific for Real-time: All forecasts (& hindcasts) must be sent to CPC 5pm ET each Wednesday Output data for real-time forecast include: T2m, Precip, Z500, Z200, SST, SM
 Initialization Requirements: Initialization Frequency: once a week Forecast providers are encouraged to use the most recent observations to initialize real-time forecasts. Initialization of the atmosphere and land surface is required; Initialization of the ocean is required for coupled O-A models; Other models should use the time evolving predicted (and/or persisted) ocean state. 	 Output Data Requirements: Data will be output on a 1x1 grid Total fields, not anomalies, must be provided. All ensemble members, not the ensemble mean, must be provided. Daily means of the variables should be output (and reforecasts will include more variables than real-time)