WGSIP Shock/Drift Project

Bill Merryfield – CCCma, Environment Canada

Mikhail Tolstykh - Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS) and Hydrometcentre of Russia (HMCR)

WGSIP 17, 13-14 Sep 2015

Objectives

- 1) Develop an online "library" of hindcast climatologies and related diagnostics
- 2) Address science questions, including
 - influence of different initialization methods on transient behavior of climate system components
 - identification of any impacts (likely negative) on climate forecast quality
- Possibly at a later stage: perform hindcast initialization experiments (same model, different initialization methods) that will contribute to (1) and inform (2)

An aside

(For later discussion)

- We have been referring to this project informally as WGSIP's "shock/drift project", etc.
- Should it be given an official name and acronym?
- Initial suggestion was LRFTIP, for "Long Range Forecast Transient Intercomparison Project" ("long range forecast" is WMO terminology for ranges ≥ 1 month)
- Other possibilities include CFSDIP for "Climate Forecast Shock-Drift Intercomparison Project"
- Feedback welcome

Project framework

- Hindcast climatologies for many ocean, atmosphere, land and sea ice variables are being computed and archived
- These represent the mean shock/drift behavior of each forecast model, as a function of lead time (and possibly initialization method)
- Initially drawing from existing data sources (S2S for subseasonal, CHFP for seasonal, CMIP5 for decadal)
- Computationally this is not trivial! N×M model years must be processed to obtain each year of climatology, where N = number of forecasts M = number of ensemble members
 → Typically N×M ~ 300+ for seasonal forecasts

Project components

- Subseasonal component (Mikhail Tolstykh lead)
- Seasonal and decadal component (Bill Merryfield lead)
 <u>Seasonal hindcast climatologies</u>
 - monthly means, some daily (first month only)
 - four start dates per year: Feb, May*, Aug, Nov*
 - 1981-2010 preferred but not enforced

Decadal hindcast climatologies

- yearly and monthly means, possibly some daily for 1st mon
- one start date per year (e.g. 1 Nov for some systems, 1 Jan for others)
- consider CMIP5 initial years 1961, 1966,...,2006 at first

*higher priority

Seasonal/decadal variables

- Ocean
 - 3D state variables: to, so, uo, vo, wo
 - surface variables: SST, SSS, SSH, MLD, heat content, etc.
 - meridional overturning streamfunctions: glb, Atl, Pac
- Atmosphere
 - 3D state variables: ta, hus, ua, va, wa
 - 2D variables: precip, near-surf T, humid, winds
 - TOA and surface fluxes (heat, freshwater, momentum)
- Land
 - vol. liquid & frozen soil moisture, snow, LAI?
- Sea Ice
 - concentration & thickness

Archive at CCCma

- Under construction, will remain so for some time
- Data nonetheless publically accessible
- FTP only can't post html for administrative reasons
- Currently at

ftp://dapp2p.cccma.ec.gc.ca/pub/goapp/LRFTIP

(could change if name of project changes)

Data standards

- File format: CF-compliant NetCDF
 - how rigidly to enforce metadata standards?
 - .nc or .nc4 ?
- File names: CMIP5 standards, adapted to hindcast climatological context; for example,

Single hindcast run (ensemble member 1, initialized near or at end of 1960): tas_Amon_CanCM4_decadal1960_r1i1p1_196101-197012.nc

<u>Hindcast climatology</u> (ensemble avg of 1-10, member 1, CMIP5 experiments initialized every 5 years:

tas_Amon_CanCM4_decadal-clim-s5_r1-10i1p1_196101-201512.nc

• Data paths: CMIP5 standards, adapted to hindcast climatological context; for example,

Single hindcast run (ensemble member 1, initialized near or at end of 1960): ~/CanCM4/decadal1960/mon/atmos/tas/r1i1p1

<u>Hindcast climatology</u> (ensemble avg of 1-10, member 1, CMIP5 experiments initialized every 5 years:

~/CanCM4/decadal-clim-s5/mon/atmos/tas/r1-10i1p1

Ancilliary reference climatologies

- When available, include also climatologies of
 - 1) Freely running model (ideally CMIP5 historical simulations, averaging over multiple ensemble members)
 - 2) Hindcast initial conditions, represented by assimilating model run or reanalysis used for initialization
- Construct using same years as for hindcasts
- These represent "endpoints" of hindcast drifts:

 Differences with hindcast climatology will illustrate drifts away from IC, toward model climate

Hindcast diagnostics

- Objective is to establish a standard set of diagnostics for hindcast climatologies, somewhat as was developed for model MJO behavior by the US Clivar MJO Working Group
- Archive will include
 - plots of diagnostics for available models
 - R scripts used to produce plots (user specifies input files, otherwise can function as "black box")
 - diagnostic data files?
- Various levels of sophistication, from SST bias vs lead time to Hovmoller plots of showing behavior along a section vs lead time, etc., drawing from existing literature
- Focus areas will include equatorial Pacific, North Atlantic

Beginnings of the archive

- Initial focus is on decadal hindcasts
- Currently serving ocean hindcast climatologies (every 5 years initialization) for CMIP5 decadal predictions from
 - CanCM4 i1 (includes subsurface ocean initialization)
 - CanCM4 i2 (ocean initialized through surface forcings only)
 - GFDL CM2.1

+ climatologies from 10 historical runs for both models

 More models to be added after ESGF returns in late September

Your contributions welcomed!

Index of ftp://dapp2p.cccma.ec.gc.ca/pub/goapp/LRFTIP/

🕆 Up to higher level directory

Name	Size	Last Modified	
DECADAL -		15-09-10	11:33:00 PM
SEASONAL		15-09-10	11:34:00 PM

Index of ftp://dapp2p.cccma.ec.gc.ca/pub/goapp/LRFTIP/DECADAL/

Name	Size	Last M	t Modified	
🖾 data		15-08-26	11:23:00 PM	
🛅 diag		15-08-26	11:40:00 PM	

Index of ftp://dapp2p.cccma.ec.gc.ca/pub/goapp/LRFTIP/DECADAL/data/

The Up to higher level directory

Name

CanCM4 4

Size	Last Modified		
	15-08-26	11:31:00 PM	
	15-09-03	05:08:00 PM	

Index of ftp://dapp2p.cccma.ec.gc.ca/pub/goapp/LRFTIP/DECADAL/data/CanCM4/

Name	Size		Last Modified	
🚞 analysis-clim-s5		15-08-26	11:18:00 PM	
🖻 decadal-clim-s5 🛛 🗲		15-08-26	11:31:00 PM	
🛅 historical-clim-s5		15-08-26	11:31:00 PM	

Index of ftp://dapp2p.cccma.ec.gc.ca/pub/goapp/LRFTIP/DECADAL/data/CanCM4 /decadal-clim-s5/

🍿 Up to higher level directory

Name	Size	Last Modified	
D day		15-08-26	11:31:00 PM
Ē⊇ fx		15-08-26	11:31:00 PM
🖻 mon 🛛 🗲		15-08-26	11:31:00 PM
🖻 yr		15-08-26	11:31:00 PM

Index of ftp://dapp2p.cccma.ec.gc.ca/pub/goapp/LRFTIP/DECADAL/data/CanCM4 /decadal-clim-s5/mon/

🐨 Up to higher level directory

Name	
🖻 ocean	-

Size Last Modified 15-09-02 11:39:00 PM

Index of ftp://dapp2p.cccma.ec.gc.ca/pub/goapp/LRFTIP/DECADAL/data/CanCM4 /decadal-clim-s5/mon/ocean/

The Up to higher level directory

Name	Size	Last Modified	
hc300		15-09-02	11:38:00 PM
🖻 mlotst		15-09-02	11:38:00 PM
msftbarot		15-09-02	11:38:00 PM
msftmyzv		15-09-02	11:39:00 PM
i so		15-09-02	11:38:00 PM
E sos		15-09-02	11:38:00 PM
120d		15-09-02	11:38:00 PM
E thetao		15-09-02	11:38:00 PM
🗁 tos		15-08-26	11:31:00 PM
i uo		15-09-02	11:38:00 PM
D vo		15-09-02	11:38:00 PM
0 wo		15-09-02	11:38:00 PM
205		15-09-02	11:38:00 PM

Index of ftp://dapp2p.cccma.ec.gc.ca/pub/goapp/LRFTIP/DECADAL/data/CanCM4 /decadal-clim-s5/mon/ocean/thetao/

The Up to higher level directory

Name	Size		Last Modified	
🛅 rl-10ilp1 🛛 🖛		15-09-02	11:43:00 PM	
🗁 r1-10i2p1		15-09-03	04:51:00 PM	

Index of ftp://dapp2p.cccma.ec.gc.ca/pub/goapp/LRFTIP/DECADAL/data/CanCM4 /decadal-clim-s5/mon/ocean/thetao/r1-10i1p1/

🐨 Up to higher level directory

Name	Size	Last Modified	
📄 thetao_Omon_CanCM4_decadal-clim-s5_r1-10i1p1_196101-201512.nc	921607 KB	15-08-17 08:15:00 PM	1

 Hovmoller plots of equatorial Pacific SST (initialized – historical)

• Evolution of SST biases (initialized – historical)

CanCM4 i1

GFDL-CM2.1 i1

11 - Historical GFDLCM2p

12 - Historical

11 - Historical GFDLCM2p

Evolution of Atlantic MOC (CanCM4 assim, i1, i2 – historical)

• Evolution of Atlantic MOC (CanCM4 assim, i1, i2 – historical)

i2 predictions

 \rightarrow shocks clearly affect forecast quality in this instance

CanCM4 i1 vertical velocity at model level 30: i1 – assim (120 month animation)

