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Changes

• Ocean	
  forcing
– LDEO	
  +	
  CA	
  +	
  CFSv2	
  mean	
  and	
  
– 2	
  addi?onal	
  scenarios	
  based	
  on	
  historical	
  errors

• AGCM	
  models
– currently	
  use:	
  Echam4.5,	
  CCM3.6,	
  COLA,	
  GFDL,	
  
FSU-­‐COAPS	
  (formerly	
  ECPC)

• Experimental	
  1-­‐?er	
  system	
  based	
  on	
  NMME



Post	
  Processing

• PaTern-­‐based	
  correc?on	
  of	
  ensemble	
  means
– Regression	
  based	
  on	
  historical	
  model	
  runs	
  
– Spread	
  es?mate	
  from	
  historical	
  forecasts	
  with	
  forecast	
  SST

• Equal	
  weigh?ng	
  of	
  corrected	
  models
• Forecast	
  probabili?es

– Gaussian	
  distribu?on	
  for	
  temperature
– Transformed	
  Gaussian	
  for	
  precipita?on
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Are$regression$(gridpoint)$forecasts$
reliable$in$prac4ce?$
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Why$over)confident?$

•  Spread$too$small?$No.$
•  Signal$too$strong?$Yes.$
•  MOS$=$a$f$+$c$
– Correct$signal$variance$=$a2$Var$(f)$
– Signal$variance$in$pracEce$

$(a2$+$sampling$variance)$Var(f)$>$true$sig.$var.$$

M. Tippett
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Selec%ng(predictor(pa0erns(
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become increasingly pronounced 
with increasing lead time. These 
differences raise the question of 
whether some models are systemati-
cally more skillful than others.

CORRELATION AND ROOT MEAN SQUARED 
ERROR. Figure 5 shows the temporal 
correlation between model predic-
tions and the corresponding obser-
vations as a function of target season 
and lead time, with a separate panel 
for each model. The correlation 
skill patterns of the models appear 
roughly comparable. All indicate 
a northern spring predictability 
barrier, with short lead prediction 
skills having a relative minimum for 
northern summer, extending to later 
seasons at longer lead times. Relative 
to the statistical models, Fig. 5 shows 
higher correlation skills by many of 
the dynamical models for seasons 
in the middle of the calendar year 
that generally have lowest skill. By 
contrast, for seasons having highest 
skills (e.g. northern winter target 
seasons at short to moderate lead 
times), skil l differences among 
models and between model types 
appear small.

Figure 6 shows individual model 
correlation skills as a function of lead 
time for all seasons combined, while 
the top and bottom panels of Fig. 7 
show skills for the pooled target sea-
sons of NDJ,5 DJF, and JFM, and 
for MJJ, JJA, and JAS, respectively. 
Overall, model correlation skills at 

5 Seasons are named using the first letters of the 
three constituent months (e.g., DJF refers to 
December–February).

FIG. 6. Temporal correlation between model forecasts and observa-
tions for all seasons combined, as a function of lead time. Each line 
highlights one model. The eight statistical models and the persistence 
model are shown with dashed lines and the cross symbol.

FIG. 7. (top) Temporal correlation 
between model forecasts and observa-
tions for Nov–Jan, Dec–Feb, and Jan–
Mar as a function of lead time. Each 
line highlights one model. The eight 
statistical models and the persistence 
model are shown with dashed lines 
and the cross symbol. (bottom) As 
at top, but for May–Jul, Jun–Aug, and 
Jul–Sep.
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Barnston, Tippett, L’Heureux, Li, DeWitt (BAMS, 2012)

During the recent decade dynamical ENSO prediction models outperformed their 
statistical counterparts to a slight but statistically significant extent, primarily because 
of their better forecasts when traversing the northern spring predictability barrier


