

Environnement Canada

The Canadian Seasonal to Interannual Prediction System (CanSIPS)

Bill Merryfield, Woo-Sung Lee, Slava Kharin, George Boer, John Scinocca, Greg Flato Canadian Centre for Climate Modelling and Analysis (CCCma)

Bertrand Denis, Juan-Sebastian Fontecilla, Jacques Hodgson, Benoit Archambault Canadian Meteorological Centre (CMC)

WGSIP 25 Sep 2012

CanSIPS Models

SST bias vs OISST 1982-2009

CanCM4

ENSO variability in models

Monthly SSTA standard deviation

HadISST 1970-99

CGCM3.1 IPCC AR4, CHFP1

CanCM3 CanSIPS

CanCM4 CanSIPS

Environment Environnement Canada Canada

CanSIPS timeline

GOAPP (Global Ocean-**Atmosphere Prediction and Predictability) research** network funded

Canada

Canada

CHFP1 pilot project

Centre canadien de la modélisation et l'analyse climatique

WMO Global Producing Centres for Long-Range Forecasts

	GPC	System/ Model	Туре	Atmospheric Model Resolution	Hindcast Period	Implementation	
	Montreal, CMC	CanSIPS	Coupled	T63/L31, T63/L35	1981-2010	December 2011	
	Melbourne, BoM	POAMA2	Coupled	T47/L17	1981-2010	Late 2011	
	ECMWF	System 4	Coupled	T255/L92	1981-2010	November 2011	
	Washington, NCEP	CFSv2	Coupled	T126/L64	1982-2010	March 2011	
⊳	Tokyo, JMA	MRI-CGCM	Coupled	T95/L40	1979-2008	2010	
	Exeter, Met Office	GloSea4	Coupled	1.875x1.25/L38	1996-2009	2009	
	Toulouse, Météo- Fr	ARPEGE- Clim	Coupled	T63/L91	1997-2007	2008	
	Beijing, BCC	BCC-CGCM	Coupled	T63/L16	1983-2004	2005	
	Montreal, CMC	HFP2	2-tier	4 models	1969-2004	2007	
	Seoul, KMA	GDAPS	2-tier	T106/L21	1979-2010		\checkmark
	Cachoeira Paulista, CPTEC	CPTEC AGCM	2-tier	T62/L28	1979-2001	2009	
	Moscow, HMC	SL-AV	2-tier	1.1x1.4/L28	1979-2003	2007	
	Pretoria, SAWS	ECHAM4.5	2-tier	T42	1982-2001	2007	

Environment Environnement Canada Canada

CanSIPS initialization

Forecast 10

*

Canadian Centre for Climate Modelling and Analysis Centre canadien de la modélisation et l'analyse climatique

12 months

(off-line)

Atmospheric assimilation

Atmospheric (re)analysis T, winds, humidity assimilated every 6 hours using variant of incremental analysis update (IAU):

→ weakening the assimilation
increases ensemble spread
to O(observational uncertainties)

IAU

 τ dependence of *T* rmsd between pairs from assimilation run ensemble

Environ Canada

Environment Environnement Canada Canada

Subsurface ocean assimilation

- Off-line variational assimilation of gridded *T* (Tang et al. *JGR* 2004; Derber & Rosati *JPO* 1989)
- S adjustment to preserve T-S relation, water column stability (Troccoli et al. *MWR* 2002)

Environment Environnement Canada Canada

Data Sources: Hindcasts vs Operational

Field	Data Source during hindcast	Data Source during operations
3D atmospheric variables	ERA40; ERA interim	СМС
SST	monthly NCEP ERSST (1979-1981) weekly NCEP OISST (1981-present)	daily CMC
Sea ice concentration	monthly HadISST (1979-present)	daily CMC
3D ocean temperature	monthly NCEP GODAS ocean analysis	<u>daily</u> NCEP GODAS ocean analysis

ENSO prediction skill (Nino3.4 index)

Anomaly correlation Dec -Nov Oct-Sep -0.6 0 5 Aug · Jul -0.65 Jun -May -Apr -Mar · Feb Jan -0 2 3 5 6 8 9 10 11 1 4 lead [months]

Mean-square skill score

Environment Environnement Canada Canada

Is there value at longest lead times?

Long-lead skill for western Canada in winter/spring

JFM

FMA

MAM

Long-lead skill for eastern Canada in summer/fall

ASO

SON

Lead 9 month 2m temperature anomaly correlation

Canada

Environnement Environment Canada

Is there value at longest lead times? Seasonal precipitation forecasts at lead 9 months

NDJ 2010-11

Issued 1 Feb 2010

La Niña predicted

Below normal (%)

Above normal (%)

Canada

Contributions to forecast compendia

Environment

Canada

IRI ENSO Prediction plume

IRI Nino3.4 forecasts from CanSIPS & other WMO GPCs

US National Multi-Model Ensemble (NMME)

US National Multi-Model Ensemble (NMME)

0.2 0.4 0.8 0.8

CanSIPS 'HFPs'

Environment Environnement Canada Canada

Calibration of probability forecasts

3-category probabilities: Below - Near - Above normal

Kharin & Zwiers J. Clim 2003

White: no category exceeds 40%

Soil moisture in first forecast month: ERA vs CMC

VFSM = volume fraction of soil moisture

Global mean

VFSM anomaly, glb_avg

Canada mean

VFSM anomaly, cang_avg

July lead 0 predicted temperature anomalies and verification

References

Journal publications

Merryfield, W. J., W.-S. Lee, G. J. Boer, V. V. Kharin, J. F. Scinocca, G. M. Flato, R. S. Ajayamohan, J. C. Fyfe, Y. Tang, and S. Polavarapu, 2012. The Canadian Seasonal to Interannual Prediction System. Part I: Models and Initialization, *Mon. Wea. Rev.,* submitted.

----- The Canadian Seasonal to Interannual Prediction System. Part II: Hindcast performance, *in preparation.*

<u>Technical report</u>

The Canadian Seasonal to Interannual Prediction System (CanSIPS): An overview of its design and operational implementation. CMC technical note (web search CanSIPS CMC note):

http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/ op_system/ doc_opchanges/technote_cansips_20111124_e.pdf

Verification interface:

username: cccmasf password: seasforum

http://www.cccma.ec.gc.ca/cgi-bin/data/seasonal_forecast/sf2

Environment Environnement Canada Canada

Benefits of coupled atmospheric assimilation: Improved ocean initialization

Correlations vs obs in equatorial Pacific (5S→5N)

Environment Environnement Canada Canada

CanSIPS sea ice predictions

Anomaly correlation, Sep mean ice concentration

CanCM3

CanCM4

Forecasts initialized End of June

Canadian Centre for Climate Modelling and Analysis Centre canadien de la modélisation et l'analyse climatique

0.9

0.7 0.5

0.3

0.1

-0.1

-0.3

-0.5

-0.7

-0.9

0.9

0.7

0.5

0.3

0.1

-0.1

-0.3

-0.5

-0.7

-0.9

Assimilation runs: ocean ensemble spread

rms potential temperature difference between two members of assimilation run ensemble

56 m depth

510 m depth

rms ∆T (°C)

Canada

Assimilation runs: ocean ensemble spread

Potential temperature difference at 510m depth between two members of assimilation run ensemble 1995-2003

|+|

invironment Environnement Canada Canada

ENSO prediction skill: model comparisons

CanCM3, CanCM4 vs ENSEMBLES models

Comparison of **individual model forecasts** (ensemble size 9 for ENSEMBLES forecasts, ensemble size 10 for CanCM3 & CanCM4). CanSIPS skills are shown for comparison

US National Multi-Model Ensemble (NMME)

OND SST from Sep initialization

ENSO prediction skill: system comparisons

Lead 9 months

Friday, December 24th 2010 - 08:06 UTC

24 December 2010

Uruguay under agriculture "state of emergency" because of lack of rains

The Uruguayan government declared Thursday an "agriculture state of emergency" because of the drought situation to the north of the country.

Bloomberg

20 January 2011

Argentina's Corn Crop Forecast Cut 4.9% on Drought

January 20, 2011, 2:11 PM EST

The Telegraph

19 April 2011

HOME NEWS WORLD SPORT FINANCE COMMENT BLOGS CULTURE TRAVE

USA | US Election 2012 | Asia | China | Europe | Middle East | Australasia | Africa

HOME » NEWS » WORLD NEWS » SOUTH AMERICA

Colombia floods are 'unprecedented tragedy'

Torrential rain unleashed by the La Nina weather system has flooded the country, killing hundreds and forcing millions from their homes.

What's next?

- Increased ensemble size $20 \rightarrow 40$
- Increased horizontal resolution T63 \rightarrow T127?
- Assimilate CMC NEMOVAR ocean data
- Assimilate land surface analysis
- Sea ice thickness initialization
- GEM NEMO coupled model
 - + New products: ocean, climate indices, sea ice,