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1. Introduction 

 

In the past 20 years, climate scientists have made tremendous advances in 

understanding and modeling the variability and predictability of the climate system 

since the dynamical predictability recognized (Charney and Shukla 1981; Shukla 

1981, 1985; Miyakoda et al 1986) and boundary-forced predictability broadened the 

possibility of climate prediction (Charney and Shukla 1981; Shukla 1985; Bengtsson 

et al. 1993). Prediction of seasonal-to-interannual climate variations has become 

operational since the NCEP and ECMWF started to produce operational ensemble 

forecast using atmospheric general circulation models (AGCMs) (Tracton and Kalnay 

1993; Palmer et al. 1993). A number of meteorological centers worldwide have 

implemented routine dynamical seasonal predictions using coupled atmosphere-

ocean-land climate models, such as ECMWF, NCEP, and Bureau of Meteorology 

Research Centre (BMRC) (Palmer et al. 2004; Saha et al. 2006; Wang et al. 2002). It 

has been also recognized that multi-model ensemble (MME) seasonal prediction is 

superior to any individual models due to effective reduction in inherent model errors 

(Krishnamurti et al. 1999, 2000; Doblas-Reyes et al., 2000; Shukla et al. 2000; Palmer 

et al. 2000, 2004; Kharin et al. 2002; Barnston et al. 2003; Yun et al., 2003 and 2005). 

Now, the MME prediction has become operational at the European Center for 

Medium range Weather Forecasting (ECMWF) in Europe, APEC Climate Center 

(APCC) in Asia-Pacific region, and International Research Institute for Climate and 

Society (IRI) in USA.  

 

2. The MME Set Up at APCC 

 

The APEC Climate Center is a major APEC science activity that was established in 

November 2005 during the leaders meeting of the Asia-Pacific Economic Forum in 

Busan, Korea. It produces seasonal and monthly forecasts of climate conditions for all 

seasons around the globe. Till 2007, APCC was issuing operational seasonal forecasts 
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four times a year. However, since January 2008, APCC has started issuing monthly 

rolling 3-month forecasts since January. 

 

APCC climate forecasts are based on model simulations from 15 prominent climate 

forecasting centers (See Figure 2. 1) and institutes in the APEC region. These forecasts 

are collected and combined using state-of-the-art schemes to produce a statistically 

'consensual' forecast. The APCC forecasts are based not just on the magnitude of the 

seasonal changes that are predicted, but also take into accounts their simulated 

probability. 

 

 
Figure  2. 1 Multi-Institutional cooperation 
 

 

Original dynamical model data including forecasts and hindcasts are firstly collected from 

the model holders in APEC members. Then these data are subject to standardization of 

format. These data are stored in each file with only one variable, one ensemble member 

and one month. Next, quality check procedures are performed for the forecast data, and 
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the data, which clear the quality control, are used for further MME procedure of hindcast, 

in conjunction with observed datasets to develop to calculate the relevant hindcast 

statistics/relationships, and also to generate the MME forecasts. 

 

APCC produces seasonal forecasts of precipitation, T850, Z500, with relevant hindcasts, 

applying five methods:  

1. Simple composite method (SCM) 

2. Probabilistic forecast (GAUS) 

3. Step-wise pattern projection (SPP) 

4. Multiple regression based blend of model ensemble means (MRG) 

5. Synthetic multi-model ensemble (SSE) 

 

The time schedule for APCC operational procedure is generally made as table 2.1. During 

the first 10 days in the month before the forecasting season, all participating model data 

are collected. From the middle of the second week, these data are processed into basic 

data with the same format and then Quality Checks are conducted for these basic data. 

Then, from the middle of the second week to the middle of the third week, APCC MME 

forecasts are carried out. After that, two days are needed for APCC outlook. The outlook 

is published every month after prior consultation and discussions with the working group 

and SAC of APCC (see Appendix-I for the latest monthly 3-month forecast outlook from 

APCC). 
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Table 2. 1 Time schedule for APCC operational procedure 
The day in the 
month before 
the season 

1~10 11~15 16~21 22~25 

Mission Data collection Standardization 
& quality check 

MME production Outlook & upload 
to website 

 
 
Table 2. 2 Participating Models 
Member 
Economies Acronym Organization Model Resolution 

Australia POAMA Bureau of Meteorology Research Centre T47L17 

Canada MSC Meteorological Service of Canada 1.875° × 1.875°  L50 

BCC Beijing Climate Center/CMA T63L16 
China 

IAP Institute of Atmospheric Physics 5°×4° L9 

Chinese Taipei CWB Central Weather Bureau T42L18 

Japan JMA Japan Meteorological Agency T63L40 

GDAPS Korea Meteorological Administration T106L21 

GCPS Seoul National University T63L21 Korea 

NIMR National Institute for Meteorological Research 5°×° L17 

MGO Main Geophysical Observatory T42L14 
Russia 

HMC Hydrometeorological Research Centre of Russia 1.125°×1.406° L28 

COLA Center for Ocean-Land-Atmosphere Studies T63L18 

IRI International Research Institute for Climate Prediction T42L18 

NCEP NCEP Coupled Forecast System T62L64 
USA 

NASA National Aeronautics and Space Administration 2.5°×2° L34 
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Table 2. 3 Hindcast/Forecast Data Specifications 

Acronym Hindcast Forecast 

 Type Period Number of ensemble 
members 

Number of ensemble 
members 

POAMA SMIP 1981-2008 28 28 

MSC SMIP 1979-2003 10 10 
BCC SMIP 1983-2008 8 8 
IAP SMIP 1979-2004 7 8 

CWB SMIP 1979-2004 10 10 
JMA SMIP 1983-2006 51 51 

GDAPS SMIP 1979-2003 20 20 

GCPS SMIP 1979-2008 12 12 
NIMR SMIP 1979-2004 10 10 
MGO SMIP 1979-2004 6 10 
HMC SMIP 1979-2003 10 10 
COLA AMIP 1981-2002 10 10 

IRI AMIP 1979-2005 24 24 

NCEP Coupled 1983-2008 15 15 
NASA Coupled 1993-2008 6 18 

 
Table 2. 4 Hindcast/Forecast Variables 

Model Prec T850 Z500 SLP T2m U850 V850 U200 V200 OLR TS 

POAMA + + + + + + + + + + + 

MSC + + + + + + + + + / / 
BCC + + + + + + + + + / + 
IAP + + + + + + + + + + / 

CWB + + + + + + + + + / + 

JMA + + + + + + + + + / / 

GDAPS + + + + / + + + + / / 
GCPS + + + + / + + + + + + 
NIMR + + + + / + + + + / / 
MGO + + + + + + + + + + / 
HMC + + + + + / / / / / / 
COLA + + + + + + + + + / / 

IRI + + + + + + + + + + + 

NCEP + + + + + + + + + + + 
NASA + + + + + + + + + + + 
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3. OPERATIONAL MME VERIFICATION 

 
The results of forecast verification against observation are shown here from 2008MAM 

to 2008SON, which are the seasons after last APCC Symposium. Pattern anomaly 

correlation coefficients (ACC) are used here to evaluate MME prediction performance in 

global, East Asia and Australia, as samples of the performance (performance for the other 

regions can be assessed from our webpage). The forecasts from four deterministic MME 

Schemes are evaluated.  

 

In 2008MAM, MME schemes show very good forecast skills for both precipitation and 

temperature over global and in East Asia. In Australia, the MME schemes still show high 

forecast skills for precipitation, however, they show lower forecast skill for temperature.  

 

In 2008JJA, MME forecasts depict quite good performance for temperature over East 

Asia and in Australia. It is remarkable that the forecast skills for temperature produced by 

MME schemes are better than those for precipitation.  

 

In 2008SON, Skill score by SPM scheme for precipitation is higher than those by other 

schemes generally over all regions. In general, MME schemes have generated much more 

skilful forecasts for precipitation and temperature in 2008MAM.  

 

In the following, we show ACC calculated between the model/MME and observation for 

some forecast as an example. 

 

The ACC is pattern correlation between predicted and analyzed anomalies defined as,  

, 

where over bar is time average. 
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ACC indicates spatial similarity between forecast and observation map. The score always 

ranges from -1.0 to 1.0. If the forecast is perfect, the score of ACC equals to 1.0. Results 

of ACC for forecast verification of 2008 are shown in the following figures. 
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a. 2008 MAM 
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b. 2008 JJA 
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c. 2008 SON 
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4. Experimental 1-tier MME prediction  

 

4.1 Introduction 

Some of the recent studies such as the APCC-supported CliPAS research results suggest 

reshaping the strategy for predicting summer rainfall in APCC operational system, and 

point to the necessity to establish one-tier MME forecast system. These studies suggest 

that the summer monsoon cannot be adequately predicted by prescribing forecasted SST 

(the so called two-tier approach). For example, the results from recent studies by CliPAS, 

a project funded by APCC, show  that the one-tier models have better skill than two-tier 

models, particularly in monsoon prediction. In general, it is expected that the APCC 

operational MME prediction, which currently mainly consists of two-tier predictions can 

be improved through including more one-tier model predictions. APCC has initiated a 6-

month coupled MME climate prediction to provide a longer lead forecast. APCC has also 

recently started development of a CCSM3-based in-house coupled climate prediction. A 

coupled SST-nudging initialization scheme has been developed and hindcast experiments 

are to be carried out. The 1-tier MME efforts have experimentally taken off as described 

below. 

 

4.2 Implementation 

Since February 2008, APCC has initiated experimental 6-month 1-tier MME prediction. 

The forecast data from 5 coupled models, namely, UH, SNU, SINTEX-F, POAMA and 

NCEP models are being used in this project. The first three model data is obtained 

through CliPAS (The pre-processing is carried out in-house for the three CliPAS models). 

The MME forecasts are generated 4-times a year, with the initial conditions of the first 

month of February, May, August and November. For 2008, the forecasts for MAMJJA, 

JJASON, SONDJF, and DJFMAM have been generated. As of now, we have generated 

forecasts based on two deterministic (simple composite and step-wise pattern projection 

method) and also the APCC probabilistic scheme. Our MME forecast results, for 

JJASON and DJFMAM, 2008 with the initial conditions of May and November, 2008 are 
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shown in the below pages. The results include forecasts from a deterministic method 

(simple composite method) and a probabilistic (GAUS) method.  Some hindcast 

verification statistics are also presented.  

 

 

 
Figure 4.1 Precipitation and temperature forecast for JJASON 2008 over the globe using 
the SCM method. 
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Figure 4.2 Same as Figure 4.1 but for DJF2008-MAM 2009. 
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Figure 4.3 Precipitation and temperature hindcast verification for JJA and SON (averaged 
over the globe). 
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Figure 4.4 Same as Figure 4.3 but for DJF and MAM. 



 17 

4. 3 In-house coupled model project 

 

Based on encouragements from SAC to develop in-house capacities in coupled model, 

and also  to increase the number of forecast samples, APCC has also experimentally 

initiated a project to operationalize the Community Climate System Model Version 3 

(CCSM3) by developing a simple initialization scheme based on coupled SST nudging. 

In order to make the initial condition for nudged SST simulation, firstly the AGCM was 

integrated from 1971 to 1982 with observed SST forcing. And then, the OGCM carried 

out using the simulated AGCM fluxes for the same period. Using the final balanced 

conditions of the synchronous AGCM and OGCM simulation, to generate the initial data 

for hindcast and forecast, the coupled nudged SST simulation is implemented from Jan. 

1982 to recent using OISST forcing. Finally, the hindcast simulation is generated from 

Nov. 1st for each year for DJFMAM forecast using the nudged initial condition without 

any forcing or flux correction. Four ensembles with the atmospheric initial condition for 

Nov. 1st, Nov. 3rd, Nov. 5th, and Nov. 7th and ocean I.C. for Nov. 1st were carried out. 

The preliminary result shows good for ENSO prediction and evolution up to 3 month. 

However, it is losing the predictability after 4 month. So, we plan to improvement of 

initialization scheme for hindcast and forecast.   

 

5. Statistical Downscaling  

 

The current Global Circulation Models (GCM) have become the main tool of climate 

studies and climate prediction/projection on a wide range of time scales from months to 

decades and hundreds of year. State-of-the-art models are able to quite successfully 

reproduce large scale atmospheric processes, particularly response of large scale 

circulation to changes in external forcings such as concentration of radiatively active 

gases, large scale surface properties, etc. The MME, in general exhibits better 

performance than most of the component models in any given 3-month period, and 

predicts the large scale features quite reasonably ( However, the models and the MME 

are not adequate to forecast local rainfall owing to the limitations in capturing the 

complex spatio-temporal dynamical interactions and physical processes as well as due to 
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the still relatively coarse resolution. To provide accurate information for regional 

applications, climate prediction products have to be downscaled. Since last two years, 

APCC has developed in-house expertise (see (Kang et al, 2008 and other references 

therein). It has successfully developed and implemented a regression-based statistical 

downscaling technique for Korea. It is based on multi-predictor optimal selection and 

coupled pattern projection method (Kang et al, 2008). Since Feb. 2008, the predictions of 

precipitation and temperature based on the downscaling scheme have been operationally 

provided for 60 Korean stations for every month (As an example, Figure 6. 1).  

 

Experimental probabilistic interpretation of multi-model downscaled forecasts was 

carried out for one season. APCC plans to continuously make efforts on probabilistic 

downscaling based on accounting for combined uncertainty associated with regression 

and model spread. Moreover, development of a temporal downscaling method based on 

weather generator is initiated for fine-scale temporal information (e.g., wet/day days, 

rainfall amount, etc.).  

 
 
Figure 5. 1 Forecast ACC (between MME hindcasts and observed values) for globally 

averaged geopotential height anomalies (500 hPa) for SON 2008. 
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Precipitation Temporal ACC (1983 -2003) Precipitation Anomaly in 2008JJAPrecipitation Temporal ACC (1983 -2003) Precipitation Anomaly in 2008JJA

 
Figure 5. 2 Hindcast ACC of downscaled forecast precipitation (left panels) and 

temperature (right panels) for June, July, August, and JJA with corresponding observed 

station data. 

 

6. Concluding Remarks  

 

From the skill scores presented for the monthly 3-month rolling operational forecasts, it is 

seen that in some forecasts, such as 2008MAM, the forecast skills of the MME are higher 

than the individual models. In some other months, some of the individual models skills 

are better than those of the MME. However, it can be seen that the individual models do 

not perform consistently at the same skill, and the MME skills are invariably better than 

most of the individual models. Having said that, the skills of the MME are modest in 

many forecasts, and also the skills mostly come from the tropical regions. This indicates 

that we need to improve the MME skills. Recent research provides a clue that selection of 

a combination of a set of models is crucial for improving the skills, and APCC is 

planning to carry out some test in this direction. We are also exploring the potential use 

of using non-linear techniques such as Artificial Neural Network.  
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Also, to improve the forecast leads as well the skill, an Experimental 6-month 1-tier 

MME prediction has been initiated at APCC by using the 3-Clipas provided and two 

operational coupled predictions during last year. So far, the forecasts for MAMJJA 2008, 

JJASON2008, SONDJF2008, and DJFMAM2009 along with the relevant hindcast 

procedure have been completed with initial conditions of February 2008, May 2008, 

August 2008, and November 2008. The most important challenge is the limited number 

of the available coupled forecast as well as the limited number of ensembles, which seem 

to limit the skills of the first three months to the levels of the current operational 

prediction.. Another practical concern for this project is that the three CliPAS models 

provide the forecasts in a research mode, and can not always provide the data by the 

required deadline (15th of the month in which the forecasts are processed) to meet the for 

operational procedure requirement. Efforts will be carried out to procure more 1-tier 

forecast datasets, with more number of ensembles. The ongoing in-house development of 

an operational version CCSM3, expected to be operational by the end of 2009, is being 

carried out with an objective to support the 6-month 1-tier MME prediction. Forecasts are 

planned 4 times with a lead of 1-7 months from 2009, with forecast and hindcast 

verifications. We look forward to include more 1-tier model predictions as and when they 

are available. Including all those efforts, we are planning 12-month forecast using 1-tier 

MME prediction by the end of 2010. 

 Other developmental work involves the development of a probabilistic forecast 

verification system. Another important product being developed at APCC is an MME-

based drought prediction system, in which the well-known standardized precipitation 

index (SPI; McKee et al. 1993) will be predicted and provided every month with due 

verification. As a complement to this service, APCC has also started an online drought 

monitoring product recently, which is provided from the monitoring WebPages of APCC 

((http://www.apcc21.net/climate/climate03_11.php). The details can be seen from 

Appendix-II. 

 

The APCC/CliPas research indicates that that the MME relies on good models. So the 

improvement of models is essential and remains a long-term goal of APCC international 

project. Significant improvement of climate models requires long-term and devoted 
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efforts, and thus, must rely on of the efforts of individual climate institutions.  To meet 

this goal, APCC is also starting to provide a feedback mechanism on systematic model 

errors to model providers.  
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APPENDIX – I 

 
The APEC CLIMATE CENTER 

Climate Outlook for January-March 2009 
 
 
BUSAN, 24 December, 2008 - Synthesis of the latest computer model forecasts at the 
APEC Climate Center (APCC), located in Busan, Korea, indicates colder than normal 
conditions in northwest North America during January-March 2009. On the other hand, 
warmer-than-normal conditions may prevail in Eastern East Asia as well as in Northern 
Europe. South America is expected to receive less-than-normal rainfall, except in the 
equatorial regions.  
   
Current Climate Conditions  

 

During the period from October through the second week of December, anomalously 

warm or near-normal temperatures persisted in most land regions around the globe except 

in the following few: northwest Africa, the Alaska, eastern USA and Mexico, Chile and 

several small pockets in South America, western Australia, the Middle East and several 

pockets in Asia; since December, most of Canada also is experiencing cooler than normal 

anomalies. In southern hemisphere, Australia and New Zealand received near-normal to 

slightly surplus rainfall; the signals in Australia actually shifted from dry in October to 

wet since November. Most of the nations in South America received near-normal to 

below normal rainfall. In general, near-normal to below normal rainfall was also 

observed in the northern hemisphere land regions. While the predictions were successful 

in capturing anomalous temperature (rainfall) signals in the East Asia, Australia, the 

Eastern Pacific, southern portions of South America (Central Canada, southern USA), the 

temperature (rainfall) anomalies in Central Asia, Canada (Indonesia, the western tropical 

Africa) could not be predicted correctly. The weak tripolar sea surface temperature 

conditions in the tropical Pacific since March 2008 resemble a so called La Niña Modoki 

condition. In the recent four weeks, the cold anomalies in the central tropical Pacific have 

slightly strengthened further; also, low level easterly wind anomalies are seen in the 

tropical western Pacific since November.   
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Forecast 

 

The APCC forecast for January-March 2009 indicates continuing near normal conditions 

in the tropical Pacific. A horse-shoe shaped anomalies of temperature as well as rainfall, 

centered in the tropical western Pacific, are expected, extending from the Northwest 

Pacific through the Philippines, Indochina, most of Indonesia and Malaysia, Papua New 

Guinea and adjoining Polynesian islands; the Indonesian region adjoining the Indian 

Ocean may, on the other hand, receive less than normal rainfall. The northeast Australian 

continent may receive slightly more than normal rainfall. 

  

The western tropical South America may experience moderately colder and wetter-than-

normal signals, while to its east, dry and warm conditions are predicted.  Further north, 

the southern North America is expected to receive less than normal rainfall with warmer-

than-normal conditions. Colder than normal conditions in the northwest North America 

may be experienced. 

 

East Asia, including southeastern China region, Korean peninsula and Japanese 

archipelago, may experience slightly warmer than normal conditions, with the predicted 

signal extending west through Russia and Northern Europe. Near normal rainfall signals 

are likely in Korean peninsula, while near normal to slightly surplus (deficit) signals can 

be expected in Japanese archipelago (southeast Chinese region). The Middle East and 

adjoining northeast African region, along with central parts of the Africa, are likely to 

experience continuing warm and slightly drier-than-normal conditions. 

 

Indian region may experience above normal temperatures, with slightly more than normal 

rainfall in its southernmost region. 

 

In view of the evolving signals, tropical Pacific needs to be watched for any possible 

further developments. 

 

 



 26 

The APEC Climate Center is a major APEC science activity that was established in November 
2005 during the leaders meeting of the Asia-Pacific Economic Forum in Busan, Korea. It 
produces seasonal and monthly forecasts of climate conditions for all seasons around the globe. 
APCC collects seasonal forecasts from 15 institutes in the APEC region: National Aeronautics 
and Space Administration USA, National Centers for Environmental Prediction USA, International 
Research Institute for Climate and Society USA, Center for Ocean-Land-Atmosphere Studies 
USA, Hydrometeorological Research Center of Russia, Voeikov Main Geophysical Observatory 
of Russia, National Institute of Meteorological Research Korea, Korea Meteorological 
Administration, Seoul National University, Japan Meteorological Agency, Central Weather Bureau 
Chinese Taipei, Institute of Atmospheric Physics China, Beijing Climate Center, Meteorological 
Service of Canada and the Australian Bureau of Meteorology.  
APCC climate forecasts are based on model simulations from 15 prominent climate forecasting 
centers and institutes in the APEC region. These forecasts are collected and combined using 
state-of-the-art schemes to produce a statistically ‘consensual’ forecast. The APCC forecasts are 
based not just on the magnitude of the seasonal changes that are predicted, but also take into 
accounts their simulated probability. 
Further details and verification for the forecasts on a long term basis are available at 
http://www.apcc21.net. The forecast verification is based on a retrospective forecast period of 
all the models for the period 1983-2003. 
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Hindcast Verifivation Summary 

 



 30 

 



 31 

 
 
 
 
 
 

 



 32 

 
 
 
 

 
 
 



 33 

APPENDIX-II 
 
Drought Monitoring and Prediction 
 

The impacts of drought are associated with the costs and losses in areas of economic, 

social, or environmental areas directly or indirectly. Drought monitoring is essential to 

develop a good prediction system, mitigate losses caused by drought and to set up 

preparedness strategies. Starting from 2008, global drought was monitored 

experimentally, and the product be provided to the public in 2009. Also experimental 

drought prediction based on MME is provided. 

The APCC Global Drought Monitoring (http://www.apcc21.net/climate/climate03_11.php) is 

based on the Standardized Precipitation Index (SPI; McKee et al. 1993) maps for the last 

1-month, 3-month, 6-month and 12-month periods using monthly precipitation at 

2.5°x2.5° resolution. SPI between -1.0 to -1.49 indicates moderate drought, -1.5 to -2.0 

severe drought, and less than -2.0 extreme drought conditions. The SPI is estimated by 

transforming the observed rainfall distribution for the recent 30 yrs, usually fitted to a 

Gamma distribution, into a standardized normal distribution on an equal probability basis. 

For global drought prediction, we use normalized MME forecast anomaly with global 

precipitation climatology (CAMS_OPI). 
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Figure. A. 1 Standardized Precipitation Index maps for the last 1-month, 3-month, 6-

month and 12-month periods on October 2008. 
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APPENDIX  III. Multi-Model Ensemble Methodologies 
 
3.1 Simple Composite Method (SCM) 
 

Multi-model ensemble (MME) technology has been considered as one of efficient 

solution to improve the weather and climate forecasts. The basic idea of MME is to avoid 

model inherent error by using a number of independent and skilful models in the hope of a 

better coverage of the whole possible climate phase spaces. SCM is a deterministic 

forecast scheme as a simple arithmetic mean of predictions based on individual member 

models. In SCM, there is an assumption that each model is relatively independent and to 

some extent, it has the capability to forecast the regional climate well, therefore we can 

expect a well model forecast by simple composite of each model prediction from different 

models. This scheme keeps the model dynamics due to the simple spatial filtering for each 

variable at each grid point. In addition, this simple scheme contains the common 

advantage and limitation of the model predictions, therefore, it could be a good benchmark 

used to evaluate other MME schemes.  

 

SCM forecast constructed with bias-corrected data is given by 
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where, Fi,t is the ith model forecast at time t, 
i
F  and O is the climatology of the ith forecast 

and observation, respectively, and N is the number of forecast models involved. Therefore, 

the SCM results are generated by the combination of bias-corrected model forecast 

anomalies. Skill improvements result from the bias removal and from the reduction of the 

climate noise by ensemble averaging. In this scheme, the ensemble mean assigns the same 

weight of 1/N to each of the N member models in anywhere regardless of their relative 

performance. 
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3.2 Stepwise Pattern Projection Method (SPM) 

 

The new MME method (MME-SPPM) is based on the statistical downscaling method, 

which is named the stepwise pattern projection model (SPPM). The SPPM technique is 

an improved version of the current APCC MME method, CPPM. The major differences 

between the two techniques lie in the procedure for pre-predictor selection and the 

optimal choice of posterior prediction. It is shown that MME-SPPM offers better skill 

over the regions in which the average of individual model skill is poor. 

 

The SPPM procedure consists of three steps: pre-predictor selection, pattern projection, 

and optimal choice of prediction. In the first step, qualified predictors are selected based 

on cross-validated correlation for the training period. The predictor field is reconstructed 

by using the selected 100 predictors at different grids which are best correlated with the 

predictand. In the second step, the covariance pattern is constructed between observed 

and reconstructed predicted pattern and then  prediction is obtained by projecting 

predicted pattern on the covariance pattern using the following equation: 
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where is the new predicted predictand at time t,  is the observed standard deviation of 

predictand, is the covariance pattern between observed predictand and reconstructed 

predictor field,   is the predictor at grid i and time t, and   is the variance of the predictor 

at grid i. In the final step, we determine whether or not the selected predictand is 

predictable at each grid point using double cross-validation with a given threshold 

correlation skill, say 0.3. The threshold value of correlation skill is subjectively chosen 

here. Thus, the rigorous test will be needed to determine the value for optimal prediction. 

If the prediction skill of double cross validation with the selected predictor pattern does 

fall below the threshold value, we consider the predictand is not predictable and then give 

up that predictor and prediction at that grid point. To make a final MME prediction, we 

apply a simple multi-model composite using available prediction after applying SPPM to 
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individual models. We performed sensitivity study in order to determine optimal 

parameters of SPPM package based on independent forecast experiment. We also 

developed the method to produce improved multi-model probabilistic forecast after 

applying SPPM to each model. 

 

3.3 Multiple Regression (MRG) 

 

The conventional multi-model superensemble forecast (Krishnamurti et al., 2000b) 

constructed with bias-corrected data is given by 
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Where, 
ti

F
,
 is the th

i  model forecast for time t , iF  is the appropriate monthly 

mean of the th
i  forecast over the training period, O  is the observed monthly mean over 

the training period, 
i
a  are regression coefficients obtained by a minimization procedure 

during the training period, and n  is the number of forecast models involved. The multi-

model superensemble forecast in equation (3.3.1) is not directly influenced by the 

systematic errors of forecast models involved because the anomalies term )( , i
ti
FF !  in 

the equation accounts for each model’s own seasonal climatology. 

At each grid point for each model of the multi-model superensemble the respective 

weights are generated using pointwise multiple regression technique based on the training 

period.  

For obtaining the weights, the covariance matrix is built with the seasonal cycle-removed 

anomaly ( '
F ), 
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Where Train denote the training period, and i  and j  the i th and j th forecast models, 

respectively. 

The goal of regression is to express a set of data as a linear function of input data. For this, 

we construct a set of linear algebraic equations, 
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C · x = 
~
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o ,                                                                    (3.3.3) 
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 is a ( n x 1) vector containing the covariances of the 

observations with the individual models for which we want to find a linear regression 

formula, and '
o is seasonal mean-removed observation anomaly, C is the ( n x n ) 

covariance matrix, and x is an (n x 1) vector of regression coefficients (the unknowns). In 

the convectional superensemble approach, the regression coefficients are obtained using 

Gauss-Jordan elimination with pivoting. The covariance matrix C and '
o  are rearranged 

into a diagonal matrix C’ and ''
o , and the solution vector is obtained as 
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where, the superscript T denotes the transpose. 

 

The Gauss-Jordan elimination method for obtaining the regression coefficients between 

different model forecasts is not numerically robust. Problems arise if a zero pivot element 

is encountered on the diagonal, because the solution procedure involves division by the 

diagonal elements. Note that if there are fewer equations than unknowns, the regression 

equation defines an underdetermined system such that there are more regression 

coefficients than the number of { '

j
o }. In such a situation, there is no unique solution and 

the covariance matrix is said to be singular. In general, use of the Gauss-Jordan 

elimination method for solving the regression problem is not recommendable since 

singularity problem like the above are occasionally encountered. In practice, when a 

singularity is detected, the superensemble forecast is replaced by an ensemble forecast. 

SVD is applied to the computation of the regression coefficients for a set of different 

model forecasts. The SVD of the covariance matrix C is its decomposition into a product 

of three different matrices. The covariance matrix C can be rewritten as a sum of outer 

products of columns of a matrix U and rows of a transposed matrix VT, represented as 
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Here U and V are (n x n ) matrices that obey the orthogonality relations and W is an 

( n x n ) diagonal matrix, which contains rank k  real positive singular values(
k
w ) 

arranged in decreasing magnitude. Because the covariance matrix C is a square 

symmetric matrix, CT = VWUT = UWTT = C. This proves that the left and right singular 

vector U and V are equal. Therefore, the method used can also be called principal 

component analysis(PCA). The decomposition can be used to obtain the regression 

coefficients: 
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The pointwise regression model using the SVD method removes the singular matrix 

problem that cannot be entirely solved with the Gauss–Jordan elimination method. 

 

Moreover, solving Eq. (3.3.6) with zeroing of the small singular values gives better 

regression coefficients than the SVD solution where the small values j
w  are left as 

nonzero. If the small j
w  values are retained as nonzero, it usually makes the residual | 

C · x 2 
~

o | larger (Press et al. 1992). This means that if we have a situation where most of 

the j
w  singular values of a matrix C are small, then C will be better approximated by only 

a few large j
w  singular values in the sum of Eq. (3.3.5). 

 

3.4 Synthetic Super Ensemble (SSE) 

 

Despite the continuous improvement of both dynamical and empirical models, the 

predictive skill of extended forecasts remains quite low. Multi-model ensemble 

predictions rely on statistical relationships established from an analysis of past 

observations (Chang et al., 2000). This means that the multi-model ensemble prediction 

depends strongly on the past performance of individual member models. 

 

In the context of seasonal climate forecasts, many studies (Krishnamurti et al., 1999, 

2000a,b, 2001, 2003; Doblas-Reyes et al., 2000; Pavan and Doblas-Reyes 2000; 
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Stephenson and Doblas-Reyes 2000; Kharin and Zwiers 2002; Peng et al., 2002; 

Stefanova and Krishnamurti, 2002; Yun et al., 2003; Palmer et al., 2004) have discussed 

various multi-model approaches for forecasting of anomalies, such as the ensemble mean, 

the unbiased ensemble mean and the superensemble forecast. These are defined as 

follows: 
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Here, Eb is the ensemble mean, Ec is the unbiased ensemble mean, S is the superensemble, 

Fi is the ith model forecast out of N models, 
i
F  is the monthly or seasonal mean of the ith 

forecast over the training period, O  is the observed monthly or seasonal mean over the 

training period, and ai is the regression coefficient of the ith model. The difference 

between these approaches comes from the mean bias and the weights. Both the unbiased 

ensemble mean and the superensemble contain no mean bias because the seasonal 

climatologies of the models have been considered. The difference between the unbiased 

ensemble and the superensemble comes from the differential weighting of the models in 

the latter case. A major aspect of the superensemble forecast is the training of the forecast 

data set. The superensemble prediction skill during the forecast phase could be improved 

when the input multi-model predictions are statistically corrected to reduce the model 

errors. 



 41 

 
Fig. 3.4.1 Schematic chart for the proposed superensemble prediction system. The new 

data set is generated from the original data set by minimizing the residual error variance 

)( 2!E  for each model 

 

Figure 3.4.1 is a schematic chart illustrating the proposed algorithm. The new data set is 

generated from the original data set by finding a consistent spatial pattern between the 

observed analysis and each model. This procedure is a linear regression problem in EOF 

space. The newly generated set of EOF-filtered data is then used as an input multi-model 

data set for ensemble/superensemble forecast. The computational procedure for 

generating the new data set is described below. 

 

The observation data (O) and the multi-model forecast data set (Fi) can be written as 

linear combinations of EOFs, which describe the spatial and temporal variability: 
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Here, )(
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n
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 and )(x
n
! , )(, xni

!  are the principal component (PC) time series and 

the corresponding EOFs of the nth mode for the observation and model forecast, 

respectively. Index I indicates a particular member model. The PCs in eqs. (3.4.2) and 

(3.4.3) represent the time evolution of spatial patterns during the training period (t) and 

the whole forecast time period (t). We can now estimate a consistent pattern between the 

observation and the forecast data, which evolves according to the PC time series of the 
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training observations. The regression relationship between the observation PC time series 

and the number of PC time series of individual model forecast data can be written as 
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With eq. (3.4.4) we can express the observation time series as a linear combination of the 

predictor time series. To obtain the regression coefficients αi,n the regression is performed 

in the EOF domain. The regression coefficients αi,n are found such that the residual error 

is minimized. The covariance matrix is constructed with the PC time series of each model. 

For obtaining the regression coefficients αi,n, the covariance matrix is built with the 

seasonal cycle-removed anomaly. Once the regression coefficients αi,n are found, the PC 

time series of new data set is written as 

)(
~

)(
~

,, TFTF
n

nini

reg

i != "                                                   (3.4.5) 

The new data set is now generated by reconstruction with corresponding EOFs and PCs: 
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This EOF-filtered data set generated from the DEMETER coupled multi-model is used as 

an input data set for both multi-model ensemble and superensemble prediction systems 

that produce deterministic forecasts. What is unique about the new data set is that it 

minimizes the variance of the residual error between the observations and each of the 

member models. The residual error variance is minimized using a least-squares error 

approach. 

 

3. 5 Probabilistic Multi-Model Ensemble (PMME)  
 

Probabilistic forecast are categorized as below-, near-, and above-normal based on 

predictions obtained from each member model. Each member model predictions are 

available with different number of ensemble members. Three equiprobable categories are 

classified by using normal (Gaussian) fitting method. The three categories for each 

member model are defined from climatological chance of occurrence for each category is 

33.3% for the hindcast period. For each category, the forecast probability is obtained by 

counting the number of individual members that prediction a seasonal mean in that 
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category, and combining on the basis of full probability formula with the weight 

according to square root of ensemble size for each model. The more detail methodology 

is as following. 

 

Gaussian approximation is underlain by the assumption that the variable is theoretically 

normally distributed, ),(~ !µNT  and all deviations from the Normal distribution are 

occasional due to the small sample size. This approach is not new, it is rather traditional 

and has been used in numerous studies in the past (Leith, 1973; Madden, 1976; Zwiers, 

1996; Kharin and Zwiers, 2001; Kharin and Zwiers, 2003, and many others). 

 

We use hindcast data for estimation of the tercile boundaries (
b
x  and 

a
x ) and forecast 

data for estimation of the probabilities associated with each of the tercile. Within this 

approach, we assume that probability distribution functions of both hindcast and forecast 

are Gaussian PDFs. 

 

We approximate probability distribution of the hindcast data with the normal one with 

parameters µ  and !  estimated based on the hindcast sample (ensemble). The two 

boundaries to determine three equiprobable categories are defined as 
b
x  = µ -0.43!  and 

a
x  = µ +0.43! . Forecast data probability distribution is also approximated with normal 

one with parameters µ  and !  estimated based on the forecast sample (ensemble). 

Probabilities of the terciles are estimated as, 

!
"#

=$=
bx

bx dxxfxxobBP )(][Pr)(                                (3.5.1)   

)()(][Pr)( BPdxxfxxxobNP x

x

bax

a

!="<= #
$!

          (3.5.2)                     

)()(1][Pr)( NPBPxxobAP
xxax

!!=<=                   (3.5.3)                         

 

where )(xf  is Gaussian probability distribution function:  
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and µ  and !  are the mean and standard deviation of the forecast data (ensemble).  

 

Figure 3. 2 illustrates the probabilities of observing X  in one of the three equiprobable 

categories condition. The lower and upper threshold are defined by 33.3% and 66.7% 

cumulative quantiles, respectively, of a probability density function (PDF) fitting to 

climatological PDF.  

 

 
Figure 3.5.1 (a). Definition of the tercile borderlines using the climatological PDF. (b). 

Forecast probabilities of below-normal (PB ), near-normal (PN ), and above-normal (PA ). 

 
For each grid point, in order to merge three category probabilistic forecasts (above-
normal, near-normal, and below-normal) the chi-square (χ2) test is applied. We estimate 
statistic  
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where O is observed frequency and E is expected frequency equal to one third of 

ensemble size. Under the Null hypothesis (uniform probability distribution – forecast is 

uncertain) this statistic has χ2 probability distribution. We set significance level at 0.05 

and treat forecast certain and associated with maximal probability out of three categories 

if Null hypothesis is rejected.  

  


