Decadal Climate Prediction Project (DCPP): Progress and Plans

Steve Yeager and Jon Robson (DCPP Co-Chairs)

A Brief History

CMIP5

Boer et al. (GMD, 2016)

CMIP6 DCPP Protocol

	Expmt	experiment_id	Tier	Years	Description
Component A:	Al	deppA-hindeast	1	3000	Five-year hindcasts every year from 1960. Note that the first forecast year is 1961
Decadal Hindcasts					from initialization toward the end of 1960.
	A2.1	•	2	3000	Extend A1 hindcast duration to 10 years
	A2.2	dcppA-historical	2	1700	Ensemble of uninitialized historical/future simulations
	A2.3	deppA-assim	2	(60-600)	Ensemble of "assimilation" run(s) (if available). These are simulations used to incorporate observation-based data into the model in order to generate initial conditions for hindcasts. They parallel the historical simulations and use the same forcing. The number of years depends on the number of independent assimilation runs.
	A3.1	dcppA-hindcast	3	300m	Increase ensemble size by m for A1
	A3.2		3	300m	Increase ensemble size by m for A2.1
	A4.1	deppA-hindeast-niff	4	3000	As A1 but no forcing information from the future (niff) with respect to the hindcast. Forcing from persistence or other estimate.
	A4.2	deppA-historical-niff	4	3000	As A4.1 but initialized from historical simulations
Component B:	B1	dcppB-forecast	1	50	Ongoing near-real-time forecasts
Decadal Forecasts	B2.1	•	2	5m	Increase ensemble size by m for B1
	B2.2		2	50	Extend forecast duration to 10 years for B1
Component C:	C1.1	dcppC-atl-control	1	250	Idealized Atlantic control
Hiatus+	C1.2	deppC-amv-pos	1	250	Idealized impact of AMV+
	C1.3	dcppC-amv-neg	1	250	Idealized impact of AMV-
	C1.4	dcppC-pac-control	1	100	Idealized Pacific control
	C1.5	deppC-ipv-pos	1	100	Idealized impact of IPV+
	C1.6	dcppC-ipv-neg	1	100	Idealized impact of IPV-
	C1.7	dcppC-amv-ExTrop-pos dcppC-amv-ExTtrop-neg	2	500	Idealized impact of extratropical AMV+ and AMV-
	C1.8	dcppC-amv-Trop-pos dcppC-amv-Trop-neg	2	500	Idealized impact of tropical AMV+ and AMV-
	C1.9	dcppC-ipv-NexTrop-pos dcppC-ipv-NexTtrop-neg	2	200	Idealized impact of northern extratropical IPV+ and IPV-
	C1.10	dcppC-pac-pacemaker	3	650	Pacemaker Pacific experiment
	C1.11	dcppC-atl-pacemaker	3	650	Pacemaker Atlantic experiment
Component C:	C2.1	dcppC-atl-spg	3	200-400	Predictability of 1990s warming of Atlantic gyre
Atlantic gyre	C2.2	1	3	200-400	Additional start dates
Component C:	C3.1	dcppC-hindcast-noPinatubo	1	50-100	Repeat 1991 hindcast but without Pinatubo forcing
Volcano	C3.2	dcppC-hindcast-noElChichon	2	50-100	Repeat 1982 hindcast but without El Chichon forcing
	C3.3	dcppC-hindcast-noAgung	2	50-100	Repeat 1963 hindcast but without Agung forcing
	C3.4	dcppC-forecast-addPinatubo	1	50-100	Repeat 2015 forecast with added Pinatubo forcing
	C3.5	dcppC-forecast-addElChichon	3	50-100	Repeat 2015 forecast with added El Chichon forcing
	C3.6	dcppC-forecast-addElChichon	3	50-100	Repeat 2015 forecast with added Agung forcing

Component A

- 5/10 year hindcasts every year from 1960
- 10+ member ensembles
- CMIP6 historical forcings + SSP2-4.5
- 10+ member set of uninitialized hist+ssp

Component B

- Real-time forecasts

Component C

Predictability, mechanisms, & Case Studies

- Idealized AMV and PDV experiments
- Atlantic & Pacific pacemaker experiments
- Perturbed initialization experiments
- Experiments with/without volcanic forcing
- Allows participation from groups not doing initialized prediction

Boer et al. (GMD, 2016)

npj Climate and Atmospheric Science

2019

www.nature.com/npjclimatsci

ARTICLE OPEN

Robust skill of decadal climate predictions

D. M. Smith ^[6], R. Eade¹, A. A. Scaife ^[6], ², L-P. Caron³, G. Danabasoglu⁴, T. M. DelSole⁵, T. Delworth⁶, F. J. Doblas-Reyes^{3,7}, N. J. Dunstone¹, L. Hermanson ^[6], V. Kharin⁸, M. Kimoto⁹, W. J. Merryfield⁸, T. Mochizuki¹⁰, W. A. Müller¹¹, H. Pohlmann¹¹, S. Yeager 64 and X. Yang6

Forecast Centre	Model	Initialised ensemble size	Uninitialized ensemble size	References
Barcelona Supercomputing Center, Spain	EC-EARTH	5	10	89,90
Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada	CANCM 4	10	10	91
Geophysical Fluid Dynamics Laboratory, USA	CM2	10	10	92
Met Office Hadley Centre, UK	HADOM3 (ANOMALY NITIALISATION)	10		93
Met Office Hadley Centre, UK	HADOM3 (FULL FIELD NITIALISATION)	10	10	93
University of Tokyo, National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology, Japan	MIROC5	6	3 (1 for precipitation and MSLP)	94,95
Max Planck Institute for Meteorology, Germany	MPI-ESM-LR	10	3	96
National Center for Atmospheric Research, USA	CESM1.1	10	10	35
71-members	Total	71	56 (54 for precipitation and MSLP)	

- Signal-to-noise paradox widespread in decadal prediction → need for very large ensembles
- Significant benefits from initialization for decadal climate outlooks
- Hints of decadal NAO prediction skill (ACC ~ 0.5) •

Total skill

(b) Temperature

Impact of initialisation

(c) Precipitation

(e) Pressure

0.9

-0.9	-0.6	-0.3	0.0	0.3	0.6	0.9	-0.9	-0.6	-0.3	0.0	0.3	0.6

North Atlantic climate far more predictable than models imply

Nature 2020

https://doi.org	/10.1038/s41586-020-2525-0
Received: 23 D	ecember 2019
Accepted: 1 Ma	ay 2020
Published onli	ne: 29 July 2020
Check for u	ipdates

D. M. Smith¹⁵², A. A. Scaife^{1,2}, R. Eade¹, P. Athanasiadis³, A. Bellucci³, I. Bethke⁴, R. Bilbao⁵, L. F. Borchert⁶, L.-P. Caron⁵, F. Counillon^{4,7}, G. Danabasoglu⁸, T. Delworth⁹, F. J. Doblas-Reyes⁵¹⁰, N. J. Dunstone¹, V. Estella-Perez⁶, S. Flavoni⁶, L. Hermanson¹, N. Keenlyside^{4,7}, V. Kharin¹¹, M. Kimoto¹², W. J. Merryfield¹¹, J. Mignot⁶, T. Mochizuki^{13,4}, K. Modali^{15,19}, P.-A. Monerie¹⁶, W. A. Müller¹⁵, D. Nicoli², P. Ortega⁶, K. Pankatz⁷, H. Pohlmann^{15,17}, J. Robson¹⁶, P. Ruggieri³, R. Sospedra-Alfonso¹¹, D. Swingedouw¹⁸, Y. Wang⁷, S. Wild⁶, S. Yeager⁸, X. Yang⁹ & L. Zhang⁹

FY2-9 DJFM SLP

MSSS									
-0.9	-0.6	-0.3	0.0	0.3	0.6	0.9			

- 169-member ensemble
- Unrealistically low signal-to-noise (RPC>1) where ACC shows skill
- Lagged ensemble (676-member) yields high skill for decadal NAO (ACC ~ 0.8) & related impacts over Europe, N. America after calibration
- High decadal NAO skill also seen in some individual systems (e.g., CESM1-DPLE; Athanasiadis et al. 2020)

RPC								
			-					
0.0	0.3	0.6	0.9	1.2	1.8	3.0		

Predictable Variations of the Carbon Sinks and Atmospheric CO₂ Growth in a Multi-Model Framework

T. Ilyina¹, H. Li¹, A. Spring^{1,2}, W. A. Müller¹, L. Bopp³, M. O. Chikamoto⁴, G. Danabasoglu⁵, M. Dobrynin⁶, J. Dunne⁷, F. Fransner⁸, P. Friedlingstein⁹, W. Lee¹⁰, N. S. Lovenduski¹¹, W.J. Merryfield¹⁰, J. Mignot¹², J.Y. Park¹³, R. Séférian¹⁴, R. Sospedra-Alfonso¹⁰, M. Watanabe¹⁵, and S. Yeager⁵

GRL 2021

- Advent of Earth system model contributions to DCPP permits assessment of carbon cycle predictability
- Essential for carbon monitoring programs in the presence of internal variability
- Multi-year skill also found for ocean acidification (Brady et al., 2020) & ocean net primary productivity (Krumhardt et al., 2020)

- AMV warming linked to tropical Pacific cooling
- Other recent DCPP-C AMV studies:
 - Global monsoons (Monerie et al. 2019)
 - N. Atlantic storm track (Ruggieri et al. 2020)
 - Arctic sea ice (Castruccio et al. 2019)
- Ongoing debate regarding validity of experimental design (e.g., Kim et al. 2020; O'Reilly et al. 2022)

WMO Annual to Decadal Climate Update

WMO Lead Centre for Annual-to-Decadal Climate Prediction

The Lead Centre for Annual-to-Decadal Climate Prediction collects and provides hindcasts, forecasts and verification data from a number of contributing centres worldwide.

https://hadleyserver.metoffice.gov.uk/wmolc/

 Decadal climate predictions are now operational, with annual updates (outgrowth of DCPP-B)

From update for 2022-2026:

Global Producing Centres

BSC	Environment and Create Charge Canad Environment et al. Overgrowet directory Canada	CSIRO	CSIRO 👸	DWD	Met Office	MOHC

Contributing Centres

And the second s	BCCR	<u>ل</u> MI	DMI		LASG		MRI	🐺 Reading
anuo	CERFACS	TORR	GFDL		MIROC	NCAR UCAR	NCAR	SMH SMHI
	CMCC	Pierre Simon Laplace	IPSL	Ð	MPI	8	NRL	

"The chance of global near-surface temperature exceeding 1.5°C above preindustrial levels at least one year between 2022 and 2026 is about as likely as not (48%). There is only a small chance (10%) of the five-year mean exceeding this threshold."

DCPP Recent Activities

- 9 virtual meetings since 2019
- Data submissions to CMIP6
- Contributions to WGI Chapter 4 of AR6 Report (Merryfield + others)
- 2019 WCRP-DCPP AGU Townhall
- Coordinated analysis (e.g., DCPP-C volc/novolc experiments; Hermanson et al. 2020; Bilbao et al. 2022)
- New coordinated experiments:
 - DCPP-D (with/without COVID emissions reductions)
 - Volcanic Response Readiness Exercise (VolRes RE), a joint SPARC/DCPP effort
- Gaps in existing DCPP experimental protocol:
 - Seasonal-to-interannual (S2I) timescales
 - High-resolution DP
- Upcoming in-person meeting (WCRP EPESC/DCPP in Exeter, UK, March 2023)

DCPP in CMIP7

- Ideas for updates to Boer et al. (2016) protocol:
 - DCPP-A to include seasonal-to-interannual hindcasts in addition to decadal (e.g., CESM2-SMYLE; Yeager et al., *GMD*, 2022)
 - DCPP-A to include explicit protocol for high-resolution (0.1° ocean, 0.25° atmosphere) hindcasts to facilitate multi-model comparison/analysis
 - DCPP-C pacemaker experiments to utilize emerging techniques that circumvent SST restoring
 - DCPP-C no-volcano experiments to call for full hindcast set
 - Increased emphasis (higher tier) for "niff" (no information from the future) & single-forcing hindcasts sets to better understand predictability mechanisms
 - Initialized forecasts with geoengineering? (in coordination with GeoMIP)
 - Multidecadal (30-year hindcasts) protocol?
- Overlaps & collaborations with WCRP Lighthouse activities need scoping out
 - Explaining and Predicting Earth System Change
 - My Climate Risk
- Should uninitialized mechanisms experiments continue to be a DCPP activity?
- How should DCPP in CMIP7 synergize with ongoing WMO operational prediction activities?

DCPP Panel Membership

- Jon Robson (Co-Chair), U. Reading
- Steve Yeager (Co-Chair), NCAR
- Tatiana Ilyina, MPI
- Jerry Meehl, NCAR
- Bill Merryfield, ECCC
- Juliette Mignot, IPSL
- Rym Msadek, CERFACS
- Wolfgang Müller, MPI
- Terence O'Kane, CSIRO
- Pablo Ortega, BSC
- Doug Smith, UKMO
- Christophe Cassou, CERFACS
- Takashi Mochizuki, JAMSTEC
- Louis-Philippe Caron, BSC

Need broader representation from active DP-producing institutions moving forward