

Global Energy and Water Cycle Exchanges Project

Global Land-Atmosphere System Studies (GLASS) Panel Update at WGNE-37

Kirsten Findell and Anne Verhoef, GLASS co-chairs With materials from the GLASS Panel Project Leaders

Michael Ek, GLASS-WGNE liaison

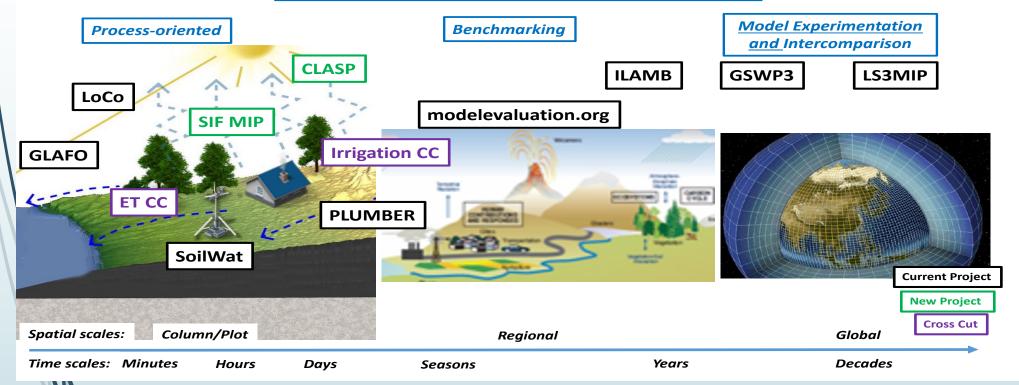
37th Meeting of the Working Group on Numerical Experimentation (WGNE-37) NCAR, Boulder, Colorado, USA 8-10 November 2022

GEWEX/GLASS update at WGNE-37, NCAR, November 2022

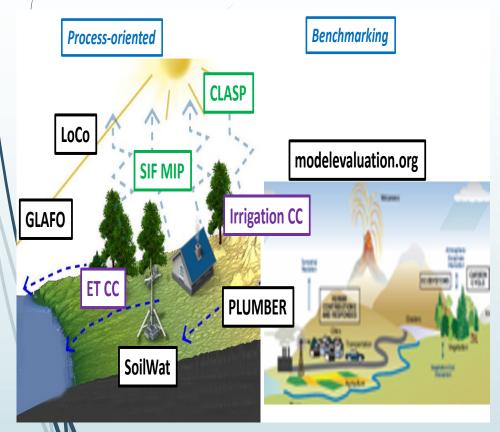
GLASS Science Objectives and Activities

Scientific Objectives and Activities of GLASS:

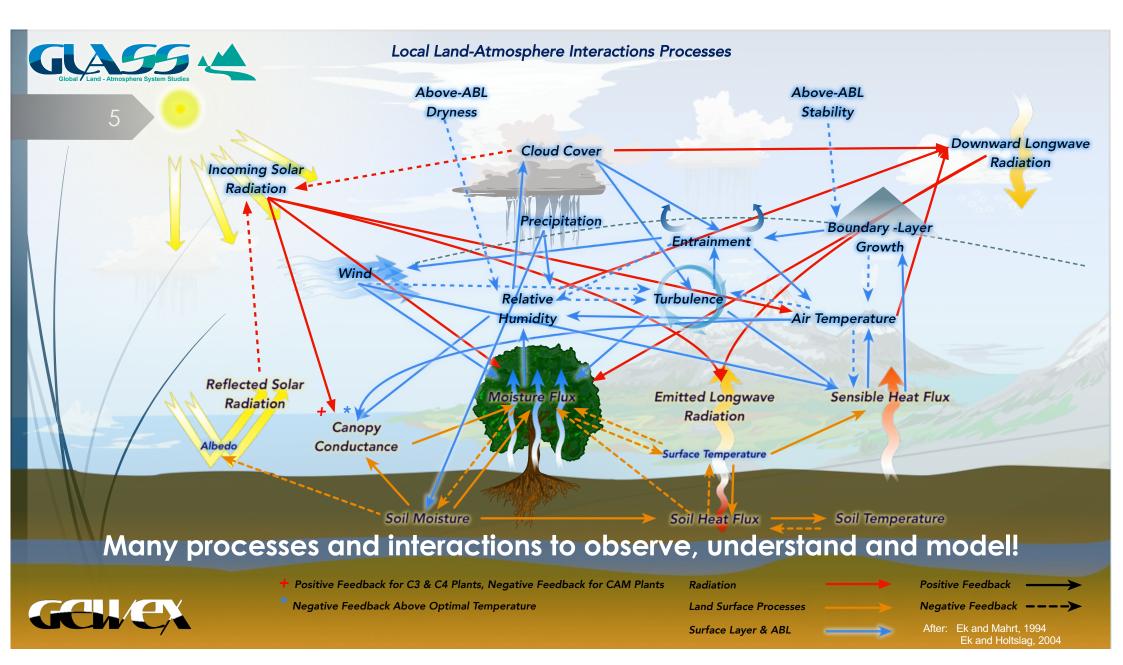
- To improve understanding of energy and water cycling on land and in the coupled land-atmosphere system; to improve representation of these processes in earth system models.
- To facilitate and support international projects that use observations, process studies, and numerical model experiments to develop and improve the representation of the land and land-atmosphere system in models.


GLASS activities/projects support GEWEX Science Goals:

- #1: Determine the extent to which Earth's water cycle can be predicted.
- #2: Quantify the inter-relationships between Earth's energy, water and carbon cycles to advance our understanding of the system and our ability to predict it across scales.
- #3: Quantify anthropogenic influences on the water cycle and our ability to understand and predict changes to Earth's water cycle.


GLASS Panel Projects: From column (process) to global scale

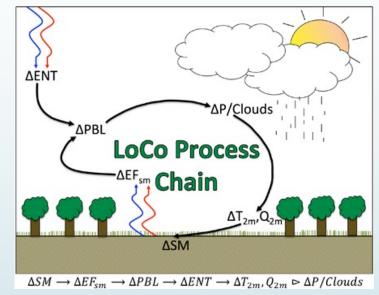
GLASS: Global Land-Atmosphere System Studies



Relevant to WGNE: GLASS process-oriented and land model benchmarking projects

- LoCo: Local Coupling Working Group: Landatmosphere interactions at local to regional (to global) scales.
- **GLAFO**: GEWEX/GLASS Land-Atmosphere Feedback Observatories.
- **PLUMBER2**: The Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project, phase 2: Offline land model experiments. Modelevaluation.org.
- **SoilWat**: Soils and Subsurface processes: Improve understanding and representation of soil physics & groundwater transport in local to global models.

Local Land-Atmosphere Coupling (LoCo) Working Group

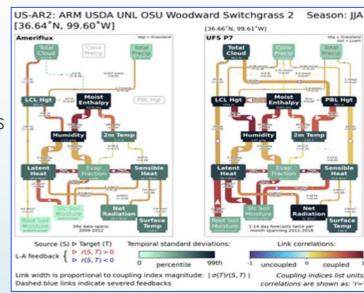

LoCo WG Objective:

To understand, quantify, model, and predict the role
of local land-atmosphere (L-A) coupling in the
evolution of land-atmosphere fluxes and state
variables and the respective water and energy
cycles, including clouds in weather & climate models.

Goals:

- Promote the importance and development of improved observations of the L-A system, namely in the PBL, as well as improved utilization of soil moisture and surface fluxes measurements in models.
- Pursue adoption of LoCo metrics by operational NWP and Climate Centers.
- Expand the scope and reach of LoCo in terms of processes and scales beyond that of warm season thermodynamics & beyond 1-D column assumptions.

GEWEX/GLASS update at WGNE-37, NCAR, November 2022


LoCo "Process Chain".

Local Land-Atmosphere Coupling (LoCo) Working Group (cont.)

Achievements:

- Engage operational centers, e.g. via U.S. NOAA/DOE
 "Coupling of Land and Atmospheric Subgrid
 Parameterizations" (CLASP project), NOAA Unified
 Forecast System Land WG has multiple LoCo members
 members; Developmental Testbed Center (DTC)
 outreach/adoption of LoCo metrics: WGNE Blue Book
 contribution on Hierarchical System Development.
- Influence/lead PBL observational advancements via NASA Decadal Survey Incubation (DSI), AmeriFlux, NOAA, and DOE activities.
- Continue to influence LoCo components of field campaigns (LAFE, GRAINEX, LIAISE, DOE-AMF3).
- Explore coordinated expansion of LoCo scope via collaborative proposals and experiments.

Fluxnet Obs

Model (GFS)

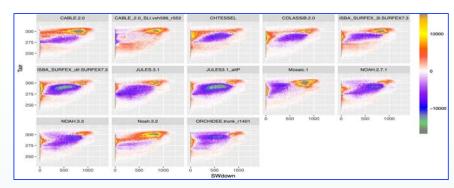
Pipe diagram showing coupling strength indices during JJA at an AmeriFlux site and the corresponding model grid cell. (Paul Dirmeyer, George Mason Univ., US).

GEWEX/GLASS update at WGNE-37, NCAR, November 2022

GLAFO: GEWEX/GLASS Land-Atmosphere Feedback Observatories

Pls: Volker Wulfmeyer, University of Hohenheim & **Planetary** Dave Turner, NOAA ESRL $\langle T'w' \rangle$ boundary layer top $\langle q'w'\rangle$ $\langle q'^2 \rangle$ $\vec{V}(z)$ Surface energy balance Scanning Doppler, WV S, Land T lidar systems **Scanning Doppler lidar-**LAI, albedo, root water uptake GEWEX/GLASS u

GLAFO Objectives:


- Understand and characterize landatmosphere (L-A) feedback with advanced metrics.
- Develop and operate GLAFOs from groundwater to lower troposphere.
- Study transport and exchange processes at land-PBL interfaces, including role of vegetation.
- Assess processes/scales at which L-A feedback is sensitive to hydrology.
- Investigate scale interactions and land heterogeneity from turbulent to micro- to mesoscale processes.

Mesoscale vortex

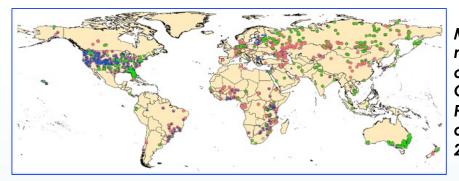
Soil moisture and temperature

PLUMBER2

Conditional analysis, e.g. Water Use Efficiency and Evaporative Fraction during dry-down events, heat-waves; domain clustering (forcing only, forcing+model states) to identify poor simulation conditions (Abramowitz et al, 2022).

PLUMBER2 Objective:

• Intercomparison project for land models, conducted within the Protocol for the Analysis of Land Surface Models (PALS) benchmarking system. PALS is now modelevaluation.org.


Goals:/

- Evaluation of multiple leading land and ecosystem models for water and carbon fluxes.
- PLUMBER2 provides forcing and evaluation datasets for model intercomparison, and comparison with empirical models.
- **Dataset from 170 flux tower sites**, spanning multiple biomes and climate zones globally. Provides meteorological variables to force models and flux variables for evaluation. The original data from a number of Fluxnet sources.

Achievements: **Hosts experiments**: forcing data on web platform; users run experiments locally then upload simulations; modelevaluation.org runs analysis routines to compare simulations to benchmarks, empirical models, and other models (e.g. example above).

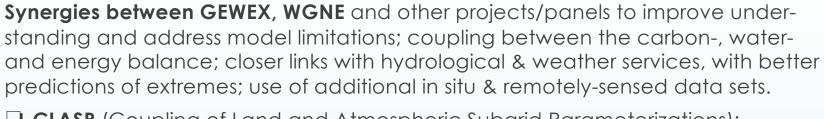
SoilWat

Machine Learning for mapping soil water characteristics curves: Global Soil Hydraulic Properties (GSHP) database (Gupta et al, 2022, Remote Sensing).

SoilWat WG Objective:

• The GEWEX-ISMC* SoilWat Initiative brings together two research communities to improve representation of soil and subsurface processes in models.

Goals: SoilWat is broadly organized around three initiatives:


- How **key soil physical processes and properties** (related to water and heat flow) are represented in land models.
- A systematic assessment of the utility of **resolved soil maps** and **sensitivity of models** to improved the quality and resolution of soil maps: **SP-MIP**.
- Strategies for better incorporation of **groundwater** in models, including soil-groundwater dynamics, and interactions with vegetation and biogeochemical cycles.

Achievements: Providing guidance on the representation of soils, i.e. composition, thermodynamics, hydraulics, data sets; guidance from Soil Parameter-MIP to understand uncertainties in soil hydraulic parameters & land model behavior (e.g. example above).

*International Soil Modelling Consortium

GLASS new initiatives & collaborations

- □ CLASP (Coupling of Land and Atmospheric Subgrid Parameterizations): understanding and modeling heterogeneous land connected to heterogeneous atmosphere. LoCo land-atmosphere (L-A) coupling metrics.
- ☐ **Urban Plumber and Urban PLUMBER-Hydro**: Improve understand and model interactions between urban land surfaces/hydrology and atmosphere. LoCo.
- "Soil-Cloud Cascade" (role of Soil Properties on L-A Interaction): spatio-temporal distribution of surface temperature, soil moisture, evaporative fraction, effect on convective cloud-forming. CLASP, SoilWat, GLAFO, GDAP, GASS, LoCo.
- □ SIF (solar-induced chlorophyll fluorescence): development and integration of canopy-level fluorescence models.
- □ **Surface water**, lakes, reservoirs: important for land heterogeneity, organization of convection. ET and Irrigation cross-cuts projects, GHP, NASA SWOT mission.

GLASS new initiatives & collaborations (cont.)

- GHP (GEWEX Hydroclimatology Panel) "cross-cut" projects to improve irrigation and evapotranspiration representation in models. First irrigation workshop in Nov 2022; a revisit to a 2016 GEWEX workshop on human water management.
- GASS (Global Atmospheric System Studies): new GABLS (GEWEX Atmospheric Boundary-Layer Study) projects to understand local L-A interaction/coupling. LoCo; GASS LS4P (Land Temperature and Snowpack on Sub-seasonal to Seasonal Prediction): Impact of Initializations. PLUMBER.
- ☐ LIAISE (Iberian Semi-arid Environment) project. GHP, GLASS, GABLS, GASS.
- WGNE 2019 Systematic Error Survey: Land-related to errors: surface fluxes, surface temperatures & diurnal cycle are of particular note, and reiterated in discussions during Nov. 2022 WGNE systematic errors workshop. GABLS, LS4P.
- Univ. leads). Focus on ocean surface fluxes. Future land phase with GLASS.
- ☐ **WWRP JWGFVR** (Joint Working Group on Forecast Verification Research): Landatmosphere coupling metrics. LoCo.
- WWRP DAOS (Data Assimilation & Observing Systems) WG: revisit land and hydrology data assimilation.

GEWEX/GLASS update at WGNE-37, NCAR, November 2022