

Activities of US Modeling Groups

Gokhan Danabasoglu CESM Chief Scientist National Center for Atmospheric Research (NCAR)

08 NOVEMBER 2022

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

NCAR

<u>ب</u> نگ ا	GFDL's Seamless Modeling System							
ઝૌ		SHIELD	SPEAR	CM4	ESM4			
K\$	MODELS:	System for High- resolution prediction on Earth-	Seamless System for Prediction and EArth	Coupled Physical Model	Earth System Model Version 4			
哭		to-Local Domains	System Research	Version 4				
Δ	TIMESCALE:	Weather; Subseasonal to	Seasonal-to-Decadal (S2D)	Decades to Centuries	Decades to Centuries Climate &			
兒瓷		Seasonal (S2S)		Climate processes	Composition			
-		Research	Research Applications	Research	Research			
X	USED FOR:	Applications Predictions	Predictions Projections	Applications Projections	Applications Projections			
ď								

Department of Commerce // National Oceanic and Atmospheric Administration // 2

Users of GFDL Models, Data, and Information

World Meteorological Organization, Climate Projections, Assessments, peer-reviewed publications, and Quarterly Bulletins

ž

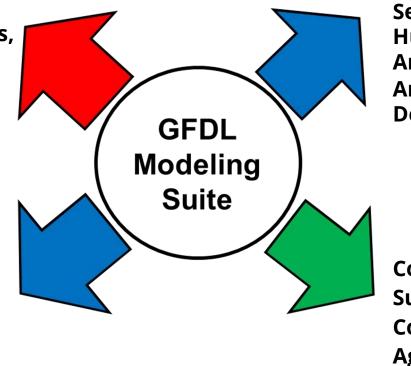
퀭

3

KS

哭

 \square


兒瓷

÷

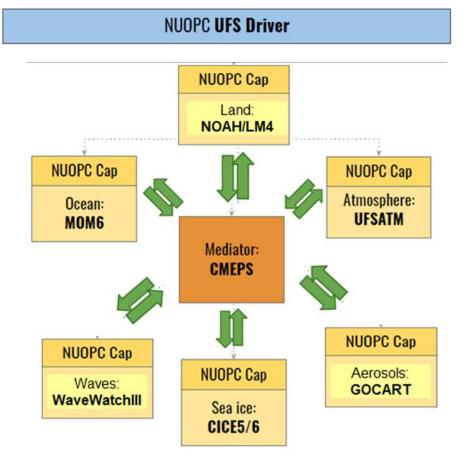
X

ඊ

National Weather Service, National Marine Fisheries Service, National Environmental Satellite, Data, and Information Service, National Ocean Service, Oceanic and Atmospheric Research

Experimental Predictions: Weather \rightarrow NWS/EMC Seasonal \rightarrow NWS/NMME Hurricane \rightarrow NWS/NHC Arctic summer sea ice \rightarrow NSIDC Annual \rightarrow IRI/Columbia Decadal \rightarrow UKMO/WMO

Computational & Infrastructural Support, Community Collaborations, other Federal Agencies, and Private sector


NWS Operational Targets for UFS-based Global Coupled Applications

GFS v17/GEFS v13: Fully coupled system for MRW and Subseasonal predictions

- FV3+MOM6+CICE6+WW3+NOAH-MP+ GOCART Coupled Model
- Advanced Physics, Weakly Coupled DA
- FY24: Implement GFS v17 & GEFS v13

Seasonal Forecast System (SFS v1.0)

- Fully coupled Unified Forecast System
- Seasonal ensemble forecasts with reanalysis and reforecasts
- Advanced coupled DA
- FY27+: Implement SFS v1.0

 \square

512

K

NATIONAL WEATHER SERVICE

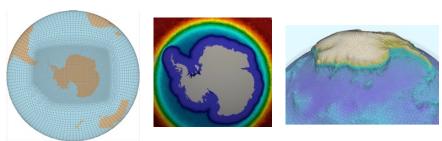
Building a Weather-Ready Nation // 4

Overarching goal: advance actionable science in support of DOE's energy mission

High resolution modeling, representing human-Earth system interactions, and quantifying uncertainty

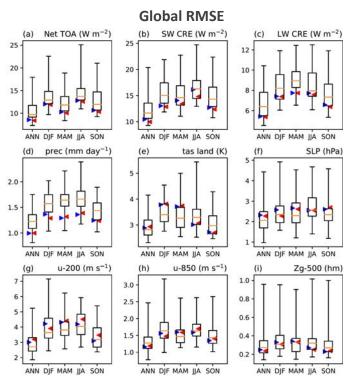
Model component	Lower resolution (LR)	High resolution (HR)	Cloud-resolving (SCREAM)	Regional refined model (RRM)
Atmosphere & Land	100 km	25 km	3 km	variable
Ocean & Ice	30-60 km	6-18 km	prescribed	variable
River	50 km	12 km	-	variable

North American Regional Refined Model (NARRM)

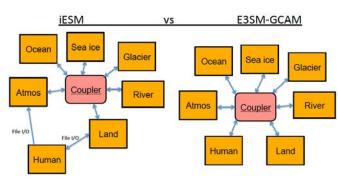

25 km → 100 km

14 km → 60 km

Southern Ocean Regional Refined Model (SORRM)



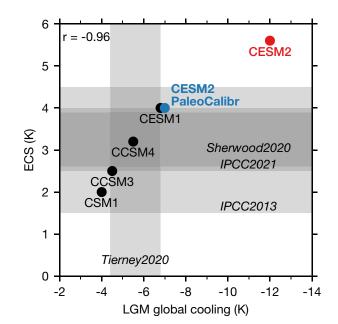
E3SMv2 (ECS = 4.0K) is better and faster than E3SMv1 DECK and historical simulations completed using LR (red) and NARRM (blue) configurations


(Golaz et al. 2022 JAMES; Tang et al. JAMES submitted)

Global cloud resolving simulation at 3.25 km resolution GPU-enabled version fully functional

(Caldwell et al. 2021 JAMES)

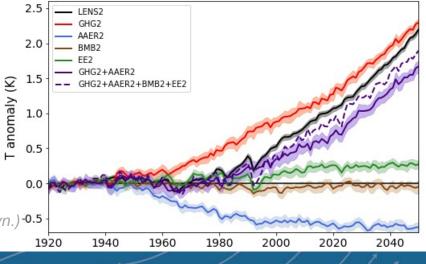
Coupled GCAM with E3SM as a component model allows more dynamic representation of human-Earth interactions



Community Earth System Model (CESM)

Overarching Goal: Advance science and understanding of the Earth system and provide actionable information for societal use in strong collaboration with the **community**

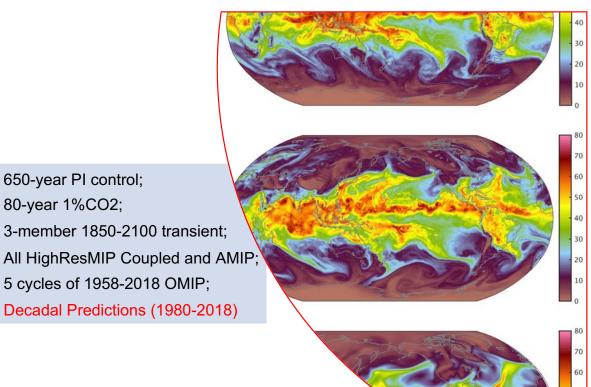
Many applications, including contributions to CMIP DECK and MIPs, use the nominal 1° resolution version of the model

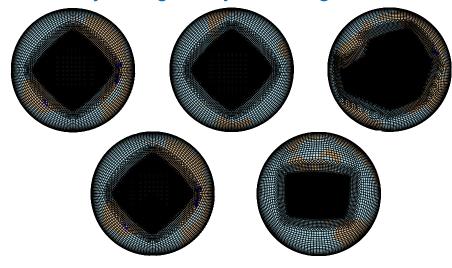

Zhu et al. (2022, JAMES)

CESM2 Large Ensembles

A 100-member ensemble for the 1850-2100 period with SSP-3.70;

Single forcing: 15 members each for greenhouse gases only; anthropogenic aerosols only; biomass burning aerosols only; and everything else


Rodgers et al. (2021, Earth Syst. Dyn.)-0.5 Simpson et al. (2022, J. Climate)



Community Earth System Model (CESM)

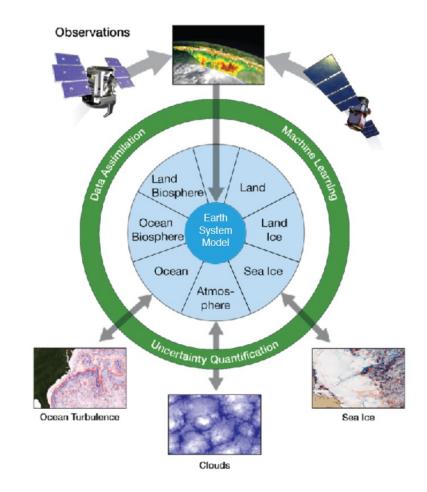
CESM high-resolution with 0.25° atmosphere / land and 0.1° ocean / sea-ice

A library of regionally-refined grids

New Earth System Prediction Efforts

- Subseasonal, including high-top atmosphere (Richter et al. 2022 WAF)
- Seasonal-to-MultiYear Large Ensemble (SMYLE) prediction system (Yeager et al. 2022 GMD)
- High-res decadal predictions (Yeager et al. 2022, GRL, submitted)

Chang et al. (2020, JAMES)


650-year PI control;

80-year 1%CO2;

Climate Modeling Alliance (Caltech, MIT, JPL)

- Unique project worldwide developing an all-new Earth system model (and the only university-based project)
- Uses physics/Al hybrid methods to inform ESM with data from observations and high-resolution simulations
- Calibration and uncertainty quantification of ESM
 through ML-accelerated Bayesian learning
- Software architecture emphasizes performance portability (CPUs/GPUs) and ease-of-use (everything is written in high-level Julia language)
- Broad involvement of students and early-career
 researchers in science leading to model development
- Training next-generation of scientists to be not only model users but also developers

clima.caltech.edu, github.com/CliMA

Targeted High-Resolution Simulations

EarthWorks

(CSU Lead, funded by NSF CSSI. NCAR and LANL Collaborators)

Science Drivers

- Climate projections are essential for guiding adaptation.
- Extreme weather & climate events are costly for societies and ecosystems.
- High resolution is needed to resolve storms, mountains, and cities.
- Kilometer-scale grids simulate extreme weather events directly.
- Analysis of high-resolution simulations leads to better understanding of parameterized processes.

Model design:

- A global coupled model configuration of CESM.
- 3.75 km global grid for the atmosphere, ocean, and land (440 Million columns)
- Uses CESM components and infrastructure, including the CMEPS Coupler.
- Non-hydrostatic MPAS Atmosphere with MPAS Ocean and MPAS CICE.
- Enables CESM community exploration of this new science.
- GPU-enabled.
- 2025 Performance goal is ~1 SYPD.

Status as of November 2022:

- Port of MPAS-O and MPAS-CICE to CESM (via CMEPS) completed.
- Coupled simulations working with 30-km grid spacing on Cheyenne.
- Dynamical cores and most of the atmospheric physics running on GPUs, testing at NERSC & TACC.
- Tests with 15-km grid spacing under way.