Japanese modeling groups’ perspectives:

MIROC, MRI, and NICAM

Masa Watanabe (Univ of Tokyo, Japan)
Model updates after CMIP6

- MIROC6
- MIROC-ESM
- NICAM
- MRI-ESM3

Direction: toward higher resolution, more complexity, unified framework
Timeline: will be ready for piControl in ~2yrs
Development of **MIROC7** (climate component)

MIROC6

Strengths: realistic natural variability (MJO, ENSO, QBO & SSW) (Tatebe et al. 2019; Fasullo 2020)

Weaknesses: large error in energy budgets (Wild 2020) & too weak cloud feedback (Zelinka et al. 2022)

MIROC7

Improved energy budgets with a prognostic rain/snow scheme interacting w/ radiation

- Better treatment of accretion & autoconversion of precipitating particles reduced “too fast rain problem” common to many GCMs
- Michibata & Suzuki (2020)
- Higher atmospheric horizontal resolution: 140km → 50km
- Other updates (ocean mixing processes, sea-ice treatment, etc)

- Weak negative net cloud feedback in MIROC6 turned to positive in MIROC7α, consistent with Sherwood et al. (2020)
- Further update in radiation in progress
Nutrient Input to Ocean BGC MIROC-ES2L, Hajima et al. (2020) GMD

Nutrient inputs and the impact on ocean biogeochemistry

● Ocean Primary Productivity
Nutrient input can compensate NPP reduction by warming

● Dissolved Oxygen
Levels of simulated deoxygenation become more consistent with obs.

● Atm.-Ocean CO₂ exchange
Nutrient inputs can enhance CO₂ exchange

Yamamoto, Hajima et al. (2022 Sci Adv)
NICAM AGCM (3.5km/L78) for 10yr simulation (on-going)

Simulation period: From Jan 1, 2011; SST/ICE: OSTIA (daily; 1/20°; w/ slab); O3, Aerosol, GHG: Following HighRes MIP protocol
CPU: Use 10240 proc. (2% node on Fugaku [2560 nodes])
Finished 1st year

ANL Precipitation
OBS (2.66 mm/day)
GCRMCLIM (3.02 mm/day)

Frequency of intense rainfall

Δx=3.5km
Δx=14km

Courtesy of D Takasuka
Km simulation with NICAM

DYAMOND Phase 2

Setup: Sub-5 km mesh global models
Period: 40 days starting from Jan 20th, 2020 (EUREC4A)
Initial state: ECMWF operational forecast (or ERA5)

Toward a global large-eddy simulation

CASE: Aug. 1-6, 2016: DYAMOND summer
Aug. 1-6 w/ $\Delta x=3.5$km; Aug. 4-6 w/ $\Delta x=870$m; Aug. 5 w/ $\Delta x=220$m

Courtesy of S Matsugishi, M Satoh

Courtesy of T Miyakawa, D Klocke & F Ziemen

Courtesy of S Matsugishi, M Satoh
Integrated Land Simulator (ILS)

Development of ILS (Nitta et al., 2020)

Basic concepts:
- Port the latest stand-alone models with smallest modification to codes
- Run the models with their preferred time steps and resolutions, and exchange necessary data with appropriate regridding

1-D Land Model MATSIRO
(Takata et al., 2003; Nitta et al., 2014; 2017)

River Model CaMa-Flood
(Yamazaki et al., 2011; 2013)

Human Impact Model H08
(Hanasaki et al., 2008)

General purpose coupler Jcup (Arakawa et al., 2020)

Models to be coupled

Lake model and Hydrological Energy Transfer (Tokuda et al., 2021)

Sib-grid Hillslope Representation
(Li et al., in prep)

Sediment Transport
(Hatono and Yoshimura, 2020)

Generalized Dam Operation
(Hanazaki et al., 2022)

Peripheral / Environment:
- Spatial coordinates are controlled by mapping tables.
- Mapping table generator SPRING (Takeshima et al., in prep)
- Boundary conditions are also generated by using SPRING
- Gitlab version management
- Benchmarking with ilamb (underway)
MRI-ESM related activities

New version MRI-AGCM
Introducing the JMA operational AGCM with many updates (available in 2023)
(Yoshimura, Kawai, Mizuta et al.)

Updated MRI-AOGCM
Incorporation of Melt pond models into the sea ice model
Arbitrary Lagrangian-Eulerian method (in progress)
Incorporation of a NPZD model
(Tsujino, Nakano, Urakawa et al.)

Toward high-resolution ESM

Historical atmospheric reanalysis
Atmospheric Reanalysis from 1850 to 2015 with the 60-km MRI-AGCM + LETKF
(Ishii et al. 2022, submitted)
Set of 50 member simulations (historical, 5 SSP scenarios, historical+SSP single forcing)

MIROC6 Large Ensemble (DAMIP)

We have completed all the simulations except for the 50-member ensembles of ssp370 and ssp245-nat

Shiogama et al. (2022 in prep.)