GFDL Models

Where are we and Where do we want to go?

WGCM24 7 December 2021

V. Balaji

Geophysical Fluid Dynamics Laboratory

Modeling, Understanding and Predicting the Earth System

NOAA/OAR/GFDL: An Integrative Modeling Strategy

Interactions leading to Changes, Variations, Extremes

PERANTMENT OF COMMEN

OAR/GFDL: Seamless Modeling of the Earth System

□ □ Understanding, Applications, Predictions & Projections

FMS provides the basis for 20 years of Unified Modeling

SHIELD System for High-resolution prediction on Earth-to-Local Domains

S-SHiELD

SHIELD

Plot courtesy Linjiong Zhou, Kun Gao, and Kai-Yuan Cheng

> 3km (and higher) Regional Storm Prediction Idealized Test

C768: 13km Global Weather Prediction

X-SHiELD

C3072: 3km Global Cloudresolving Simulation C384: 25km Subseasonal-to-seasonal Prediction

> C768r15n3: 20-3km Severe Weather Prediction

T-SHIELD

C768n4: 13-3km Tropical Cyclone & MJO Prediction

5

Global Cloud-Resolving Modeling

3.3-km GFDL X-SHiELD GCRM: Great realism, way expensive Seamlessly integrated with all other UFS models FV3-based GCRMs at GFDL and NASA have led US efforts since 2007.

GFDL X-SHiELD a powerful tool for weather prediction, climate modeling, and basic science. Leverages UFS advances (cf. TKE-EDMF improvements to Stratocumulus)

Use case: Vulcan and UW use ML *emulation* of GCRM in a cheap climate model to reduce biases.

WGCM24

7 December 2021

Heterogeneous Computing

GFDL: fastest nonhydro model in DYAMOND but still too expensive.

NASA Goddard: 30x GPU speedup in FV3-based GEOS in early 2010s. (This takes a lot of work!!)

GridTools DSL: *performance portability* between CPUs, GPUs, ARMs, etc.

- Swiss/German COSMO and German ICON already ported
- ECMWF plan to port soon

Public-Private-University partnership working **now** to port FV3 and the UFS into GridTools.

Goal: Accelerate to global 1 km

Model	Nodes	CPU Cores	SDPD
ARPEGE-NH	300	7200	2.6
FV3	384	13,824	19
GEOS	512	20,480	6.2
ICON	540	12,960	6.1
IFS	360	12,960	124
MPAS	256	9216	3.5
NICAM	640	2560	2.6
SAM	128	4608	6.0
UM	340	12,240	6.0

Table 5 from Bjorn Stevens et al., 2019, PEPS All models except ARPEGE-NH and ICON at same or coarser Δx

Strongly Improved Regional Precipitation

Pacific Double ITCZ Challenge

Prediction Skill: New Skill Identified

Source: Climate.gov image adapted from Kapnick et al., Proc. Natl. Acad. Sci. 2018

March-May Dust Event Anomalies

- We are successively looking at more complex prediction problems
 - Start with precipitation & temperature (Jia et al. J Clim, 2015, 2016, 2017; Zhang & Delworth, Nature Comm, 2018)
 - Extratropical storm tracks (Yang et al., *J Clim*, 2015)
 - Snowpack (Kapnick et al., PNAS, 2018)
 - Dustiness (Pu et al, GRL 2019)

Improvements in prediction systems push the limit of prediction for phenomena, regional scope, & lead time

, (

SPEAR Large Ensembles

Seasonal/Decadal prediction model is used to generate 30-member ensembles of projections for 1851-2100.

- 1851-2010: Use observed atmospheric composition
- 2011-2100: Use projected atmospheric composition from SSP5-85

Where we are: Land model prototype capturing 30m-scale water heterogeneity

Chaney et al, 2018

Simulations between 2002 and 2014 (Spin-up 1974-2001)

Where we want to go: Incorporation of fine scale local information for decisionrelevant Earth System Model Predictions

ROMS-COBALT developed through in collaboration with Rutgers University (Enrique Curchitser and Rafael Dussin); Simulations on east coast and Gulf of Mexico (Zhang et al., 2018; 2019); California Current (Dussin et al., 2019; van Oostende et al., 2018); Gulf of Alaska (Hauri et al., 2020) and Hawaii (Friedrichs et al., submitted)

Where we want to go: Regional MOM6 capacity to address these marine resource challenges within a unified framework

ML: combining theory and observations

• From <u>Sonnewald et al,</u> <u>Science Advances (2020),</u> highlighted in Eos, <u>How</u> <u>Machine Learning Redraws the</u> <u>Map of Ocean Ecosystems</u>.

• Tracking such features of dynamics and ecology in historical simulations and model projections (ongoing and future work).

Other examples from GFDL: Muhling et al (2018), Muhling et al (2017), Ross and Stock (2019), Chaney et al (2018)

Multiple weather-climate phenomena Variability, extremes, and change

National Research Council (2012) Recommendation: "Unified" modeling approaches

Weather to Climate is "Seamless"