# Possible next steps in community-based model evaluation

# Peter Gleckler (PCMDI) and Eric Guilyardi (IPSL) with inputs from many colleagues

### WGCM22

BSC, Barcelona, 25-29 March 2019









## Context

Peer-reviewed publication: primary mechanism for documenting CMIP research. But, pressing reasons to more efficiently define, produce, summarize, and make relevant model evaluation results available, e.g.:

- Inform national assessments, the IPCC process, stakeholders, and public
- Advance science more efficiently (provide high level summaries; less re-inventing)
- More directly contribute to model development (via useful quick feedback)

Community-based model evaluation capabilities are becoming a reality, thanks to the design target provided by the CMIP conventions and standards

## A few examples

#### **Integrating capabilities**

- ESMValTool (CVDP, *others*)
- CMEC (PMP, ILAMB, TECA)
- NOAA MAPP process diagnostics

#### **Expert teams**

- CLIVAR ENSO group
- WGNE MJO task force
- CFMIP diagnostics

There are also many scientifically focused independent tools under development

**Synergies** 

### The WGNE/WGCM Metrics and Diagnostics Panel

Beth Ebert, Veronika Eyring, Pierre Friedlingstein, Peter Gleckler (chair), Simon Marsland, Robert Pincus, Karl Taylor, Keith Williams

- Has helped draw attention to metrics and stimulate research
- The panel has been relatively inactive the last few years and in light of the the WCRP Strategic and Implementation plans it is a good time to rethink

#### Anticipating future needs and expectations in CMIPx

- Individual research still fundamental to CMIP related science
- Building on that, routine and systematic evaluation will only become increasingly important
- Increasing involvement by expert teams would help ensure advancing science is progressively incorporated into community evaluation capabilities
- Nurturing a set of standards for how these tools can be linked (yet remain independent) will be more complicated than establishing data standards but it is essential

#### Model evaluation workflow



Articulate different actors, different expertise and expectations

## Separation of concerns + co-construction

- Climate information users need state-of-the-art :
  - Science of model evaluation
  - Software tools for model evaluation
- Different experts -> different workflow
- Otherwise one of them becomes obsolete
  - High risk of mis-use
  - Loss of trust, wasted ressources
- Articulation/modularity via clear interfaces
- e.g. lessons learned for CMIP, ESGF, ES-DOC,...





#### First results – ENSO performance in CMIP5 historical

Shading : relative performance wrt MME

#### Address these specific questions:

- ENSO performance in historical simulations
- ENSO teleconnections in historical simulations
- ENSO processes





#### How can we move forward ?



### Possible work plan for a potential "WCRP model evaluation panel or work group"

- 2019: WCRP and existing panels help refine scope and vision and identify members
- First year (2019-2020): analysis of existing model evaluation efforts and identify opportunities/gaps
- Year 2: select and advance a few pilot areas (beyond ENSO)
- Year 3: unveil consensus model evaluation framework and process for these first areas
- Year 4: review activity via WCRP process (tdb)

#### Summary and discussion

- Community–based model evaluation involves 3 pillars that need to be articulated
- Viable process proposed (pilot study) that requires further community discussion (e.g. include NWP/SF ?)
- Because of our community organisation and funding, resilience requires modularity and diversity of software tools
- Model evaluation standards and framework may help many groups develop diagnostics towards interoperability
- Next steps

#### **Example of interfaces choices**



Enable different compute libraries <CL> kernels (e.g. CDAT, IRIS, ...) ?