

National Aeronautics and Space Administration Goddard Institute for Space Studies Goddard Space Flight Center Sciences and Exploration Directorate Earth Sciences Division

GISS ModelE Progress and Plans

WGCM, Princeton, Nov 2016 Gavin Schmidt and team

GISS Post-CMIP5 Progress

Goddard Institute for Space Studies

MJO variability and prediction skill Self-generated QBO Enhancements to forcings (irrigation, volcanic, solar) Better use of single forcing runs

Greatly improved ocean/sea ice simulations

Planned GISS CMIP6 Configurations

Goddard Institute for Space Studies

Multiple configs w/variations for DECK runs:

1. GISS-E2.1 (ready)

Variations: OMA vs MATRIX; R vs H ocean; L40 vs L96/102

2. GISS-E3 (mid-2017)

C90+L96/102, same oceans; self-generated QBO, MATRIX aerosols, M&G cloud microphysics, cold pool convection

3. GISS-E4 (2018?)

C180+L96/102, GO2 (GISS Ocean 2) (cubed sphere/ALE vertical)

Newly resolved modes I: MJO

Goddard Institute for Space Studies

GISS-E2.1

Goddard Institute for **Space Studies**

Cold pool parameterization:

Formed from downdrafts, used to restrict occurrence of weakly entraining plumes

19 17 YOTC 20-day MJO rain 15 Hindcast day hindcast Hovmöller diagrams 65 75 Longitude (0.63 20-day С

correlation with TRMM TMI with cold pool vs. 0.70 TMI-Radar correlation)

GISS-E2

95 105 115 125 135 145 155165E

Self-generated stratospheric QBO

Goddard Institute for Space Studies

Tropical zonal mean winds

Rind et al (2014)

Ocean model improvements

Goddard Institute for Space Studies

Reformulation of GM eddy parameterisation GISS-Vertical Mixing Scheme Inclusion of GM vertical dependence Evaluation with stand-alone ocean CORE-I/II protocol

CORE II: Danabasoglu et al (2014)

GISS Ocean 2 (GO2) Model

Goddard Institute for Space Studies

Orthogonal Cubed-Sphere grid C720 goal (1/8°)

Integral Remapping

Lagrangian Dynamics

Arbitrary Lagrangian Eulerian (ALE) vertical coordinate

MATRIX Aerosol model

Goddard Institute for Space Studies

Ternary Nucleation: H₂SO₄ – H₂O – NH₃ (Napari et al 2002) **Ion induced nucleation:** (Turco et al 1998) **New particle formation:** growth (Bauer et al 2008)

Aerosol Microphysics:

Simulation of aerosol mass, mixing state and size distributions (1). Needed for:
Indirect effects: Microphysical parameter. of aerosol - cloud activation (1,2)

• **Direct effects**: Radiation scheme coupled to aerosol shape and mixing state information (3)

MATRIX

Aerosol Microphysical Model based on the Methods of Moments Bauer et al. ACP 2008

Efficacy of forcings in transient runs

Goddard Institute for Space Studies

Use historicalMisc runs + forcing calculations to assess predictability of TCR+ECS from historical transients

Historical runs *underpredict* sensitivity

Forcing improvements

Goddard Institute for Space Studies

Irrigation (water added to land surface, either from rivers or groundwater)

- Greater differentiation in LU (crops, pasture etc.)
- Volcanic forcing by emission
- Solar forcing uncertainty

Aerosol forcing - uncertain pre-cursor emissions and atm. processing

Goddard Institute for Space Studies

Interactive simulation of explosive volcanoes

Pinatubo AOD via GISS E2.1 + MATRIX

MIP foci

Goddard Institute for Space Studies

1) DAMIP - single forcing ensembles (also SolarMIP/VolMIP/LUMIP) 2) RFMIP - Essential complement to understanding responses for all relevant expts. 3) AerChemMIP 4) CFMIP 5) PMIP - 'out-of-sample' evaluations

GISS CMIP concerns

Goddard Institute for Space Studies

- Forcing variations and expansion ✓ Greater (controlled) structural variations in models √
- Greater interactions </
- Better stratosphere and trop/strat coupling \checkmark
- Feedback to model groups from users ??
- Tracking of data use (DOI or PIDs) ?
- Complete enough simulations to multiply/constrain ECS ?
- \mathbf{D} a visual data a subscription to aviational files \mathbf{M}