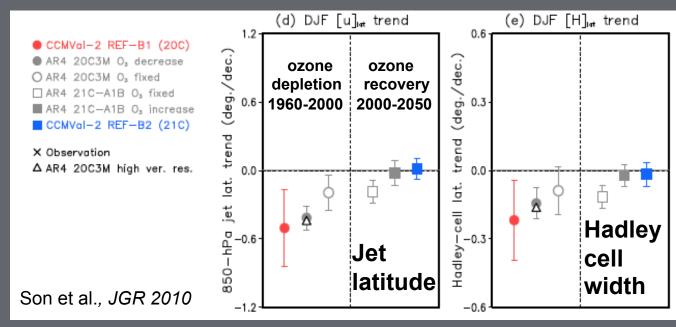


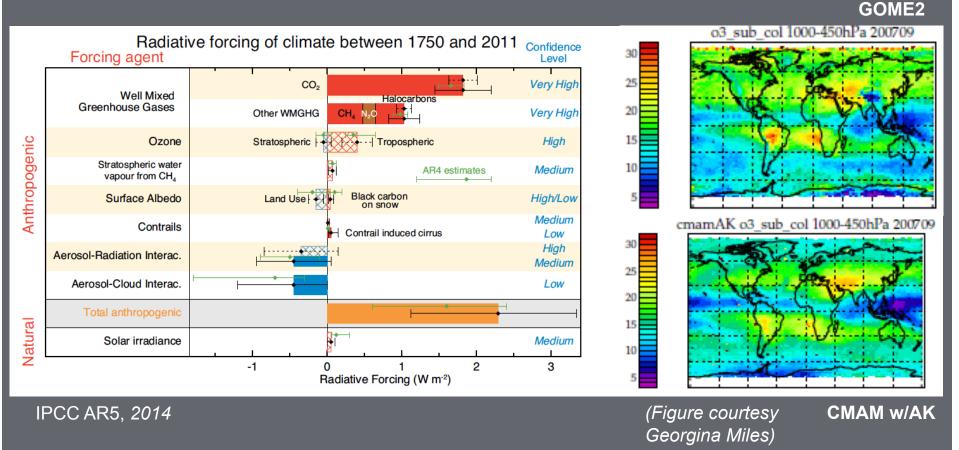
OZONE AND STRATOSPHERIC WATER VAPOUR DATABASES FOR CMIP6

Michaela I. Hegglin, University of Reading UK (co-chair IGAC/SPARC CCMI)

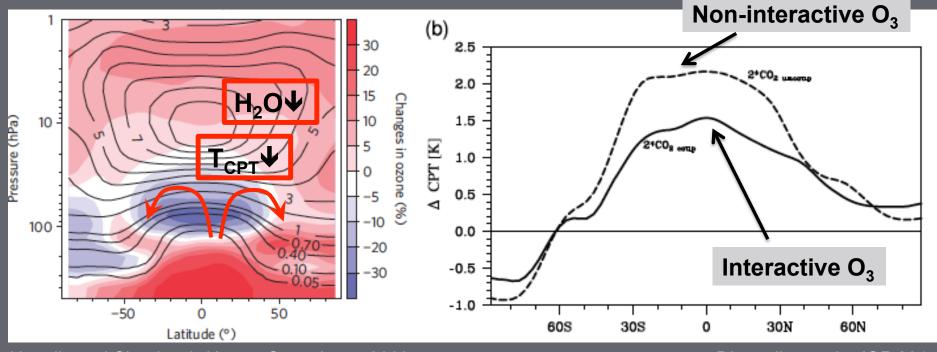

Jean-François Lamarque, NCAR US *(co-chair IGAC/SPARC CCMI)* Andrew Gettelman, NCAR US David Plummer, CCCma CA Neal Butchart, Met Office UK Irene Cionni, ENEA IT

MOTIVATION

- A realistic representation of tropospheric and stratospheric ozone in climate models is crucial for reproducing past and predicting future trends in climate variables.
- The SH ozone hole has been shown to affect tropospheric surface climate during austral summer even outside SH high latitudes.
 - Changes have potential implications for ocean circulation and carbon uptake (Cai & Cowan, *J Clim* 2007; Lenton et al., *GRL* 2009)



TROPOSPHERIC OZONE AND CLIMATE


- Tropospheric ozone constitutes the third-most important GHG contribution to radiative forcing since 1750, after CO₂ and CH₄.
- 3D-distribution important to capture regional forcing and consequent effects on dynamics.

STRATOSPHERIC H₂O AND CLIMATE

- Interactive ozone is important not only in the polar regions, but also in the tropics:
 - Climate change is predicted to lead to an increase in the Brewer-Dobson circulation, with associated decreases in tropical lower stratospheric ozone.
 - As a consequence, the expected stratospheric water vapour increase is also reduced, thereby reducing climate sensitivity.

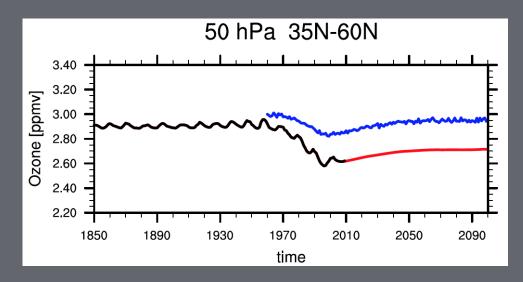
Hegglin and Shepherd, Nature Geoscience 2009

Dietmüller et al., JGR 2014

CMIP 5 SITUATION

 Due to the high computational demand, only 20% of CMIP5 models ran their simulations with interactive chemistry. 80% used prescribed ozone fields, of which ³/₄ used the IGAC/SPARC ozone database (Cionni et al., 2010).

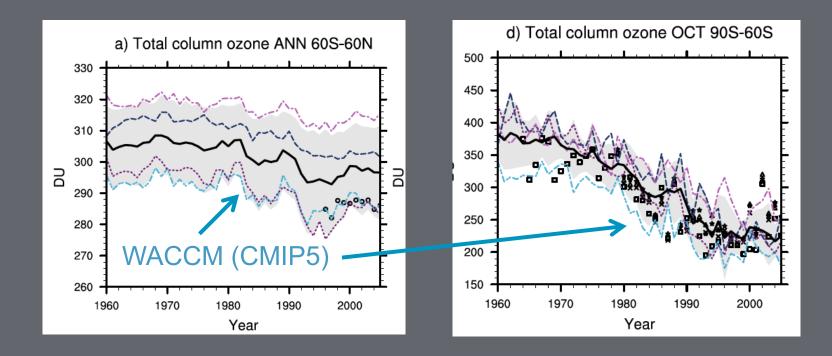
Table 1. Summary of Features of the CMIP5 Models With a Focus on How They Treat Ozone Chemistry^a


		O ₃ Ch	emistry	Prescribed			
Modeling Center	Model	Тюр.	Strat.	Ozone Data Set	Main Reference	Main Reference for Ozone Chemistry Scheme or Offline Calculation	Group
Centre for Australian Weather and Climate	ACCESS1-0	Р	Р	C1	[Dix et al., 2012]	[Cionni et a], 2011]	NOCHEM
Research, Australia	ACCESS1-3	Р	Р	C^1	[Dix et al., 2012]	[Cionni et al., 2011]	NOCHEM
Beijing Climate Center, China Meteorological	BCC-CSM1.1	Р	Р	C^1	[Wu, 2012]	[Cionni et a], 2011]	NOCHEM
Administration, China	BCC-CSM1.1-M ^b	Р	Р	C^1	[Wu, 2012]	[Cionni et al., 2011]	NOCHEM
College of Global Change and Earth System	BNU-ESM	SO	SO	P^2		Lama que et al., 2012;	Gerenti
Science, Beijing Normal University, China						Lamarque et al., 2010]	
Canadian Centre for Climate Modelling and	CanAM4	Р	Р	C ¹ modA	[von Salzen et al., 2013]	[Cionni et al., 2011]	NOCHEM
Analysis, Canada	CanCM4	Р	Р	C ¹ _{modA}	[von Salzen et al., 2013]	[Cionni et al., 2011]	NOCHEM
-	CanESM2	Р	Р	C ¹ modA	[Arora et al., 2011]	[Cionni et al., 2011]	NOCHEM
National Centre for Atmospheric	CCSM4	SO	SO	P ²	[Meehl et al., 2012]	[Lamarque et al., 2012; Lamarque	CHEM
Research, USA						et al., 2010]	
Community Earth System Model Contributors	CESM1(BGC)	SO	SO	P^2	[Gent et al., 2011]	[Lamarque et al., 2012; Lamarque et al., 2010]	CHEM
	CESMI(CAM5)	SO	SO	P^2	[Gent et al., 2011]	[Lamarque et al., 2012; Lamarque	CHEM
						et al., 2010]	
	CESM1(FASTCHEM)	I	I	-	[Gent et al., 2011]	[Cameron-Smith et al., 2006; Hsu and Prather, 2009]	CHEM
	CESM1(WACCM)	I	I	-	[Calvo et al., 2012; Gent et al., 2011]	[Calvo et al., 2012; SPARC- CCMVal, 2010]	CHEM
Centro Euro-Mediterraneo per I Cambiamenti Climatici, Italy	CMCC-CM	Р	Р	C ¹ _{modB}	[Vichi et al., 2011]	[Cionni et al., 2011]	NOCHEM
Centre National de Recherches	CNRM-CM5	I	I	-	[Voldoire et al., 2012]	[Cariolle and Teyssedre, 2007]	CHEM
Meteorologiques, France							-

Eyring et al., JGR 2013

CIONNI ET AL. OZONE DATABASE

- CCMI will provide an update of the Cionni et al. database.
- Known weaknesses in the Cionni et al. database will be addressed:
 - Fields merged from models with either stratospheric or tropospheric chemistry.
 - Provided only one emission scenario into the future.
 - Showed some unphysical behaviour that was introduced by merging with stratospheric observations:
 - Not 'deep' enough Antarctic ozone hole.
 - No recovery from ozone depletion in the Northern midlatitudes.


CCMI OZONE DATABASE

- Will be produced with CCMI models that include comprehensive chemistry in both the stratosphere and troposphere.
- Ozone fields will extend from 1000 to 1 hPa.
- 3D monthly mean fields.
- Timeseries between 1850 and 2100:
 - 1850-2010: Historical emissions (two CCMI models CMAM & WACCM)
 - 2010-21000: Future emission scenarios (RPC2.6, 4.5, 6.0, and 8.5 from CCMI)
 - Envisage scaling approach to be adaptable to new emissions scenarios
- Will include solar cycle signal from HEPPA-SOLARIS.
- Will *not* include QBO signal.
- No merging with observations, but rigorous evaluation of models with observations and weighting according to key performance metrics.

CCMI OZONE DATABASE FIRST RESULTS

CCMI STRATOSPHERIC H₂O DATABASE Reading

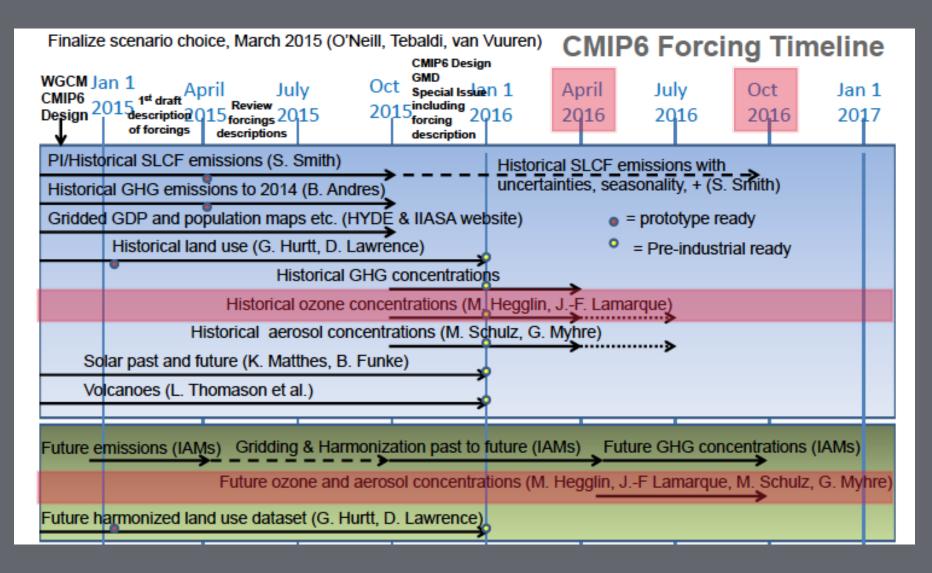
- Following same approach as for ozone database.
- However, only stratospheric zonal mean fields will be provided.
- Only suggested for models with unrealistic stratospheric water vapour.

TIMELINE

• Consistent with CMIP6 timeline.

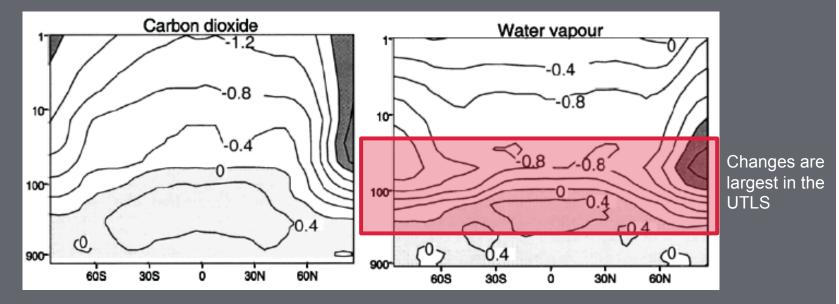
Pre-public	cation of fields on CCMI w	vebpage	Publication in ESSD
Dec A 2015	pril to July 2016	Oct 2016	Dec 2016
1850 fields Will allow for 'tuning' model response in historical reference state.	Historical timeseries (1850-2010)	Future scenar (2010-2100)	rios

Your comments/questions welcome!


- Please email <u>m.i.hegglin@reading.ac.uk</u>
 - E.g. Decadal prediction folks, would you rather want more realistic fields using observations over the recent past?

EXTRASLIDES

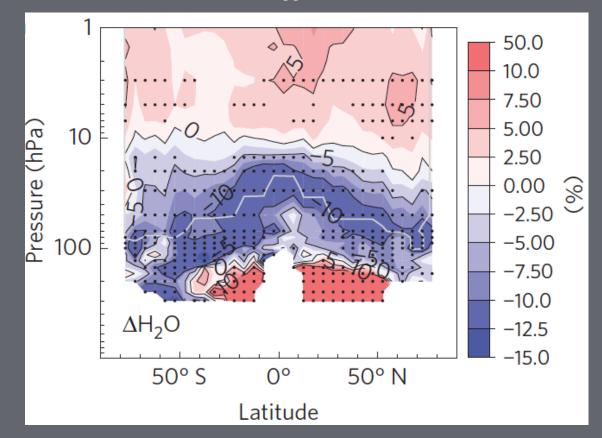
TIMETABLE



IMPORTANCE OF STRATOSPHERIC H₂O

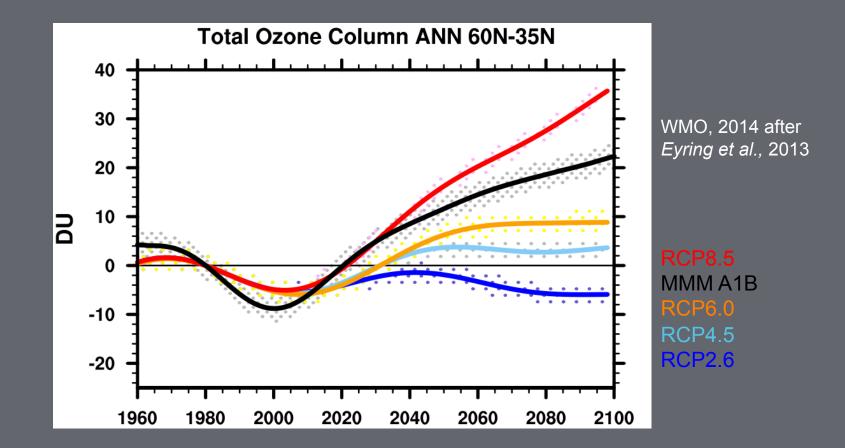
- Water vapour is the most important natural greenhouse gas in the atmosphere and provides a positive feedback to the climate forcing from CO₂.
 - A stratospheric water vapour trend of 0.4 ppmv/decade (as was apparently observed over Boulder) over 1980-1997 would have led to global surface warming that was 44% of that from CO₂ alone.
 - The assumed constant water vapour increase induces a strong latitudinal structure in the cooling of the stratosphere → important for dynamical feedbacks

AeroCom/CCMI AerChemMIP workshop – ESRIN October 2015


Forster & Shine, GRL 1999

STRATOSPHERIC H₂O CHANGES (late 1980s to 2010)

Hegglin et al., Nature Geoscience 2014


- Trends in the lower to mid stratosphere are seen to be negative, not positive as would be inferred from the Boulder record!
- In the upper stratosphere, the trends are positive.
- The vertical structure in the changes indicates structural changes in the Brewer-Dobson circulation.

RCPs AND TOTAL COLUMN OZONE

• Mix of future GHG emissions will determine the state of the ozone layer (with CH₄ and N₂O having opposing effects on stratospheric ozone chemistry).

