MRI participation in CMIP6

Seiji Yukimoto, Hideaki Kawai*, and Ryo Mizuta
Meteorological Research Institute, JMA
Meteorological Research Institute Earth System Model ver. 1

MRI-ESM1
= AGCM + OGCM + Aerosol + Ozone + Carbon cycle

MRI-CGCM3
= AGCM + OGCM + Aerosol

MRI-CM3
= AGCM + OGCM + Aerosol + Ozone

CMIP5 version
AGCM: T_L 159 L48
(H.~120km, Top: 0.01hPa)
OGCM: 1° × 0.5° L51
Aerosol: T_L 95 L48
(H.~180km, Top: 0.01hPa)
Ozone: T42 L48
(H.~280km, Top: 0.01hPa)
MRI-ESM1.x for CMIP6

<table>
<thead>
<tr>
<th>Model Name</th>
<th>CMIP5</th>
<th>CMIP6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MRI-CGCM3 MRI-ESM1</td>
<td>MRI-ESM1.x</td>
</tr>
<tr>
<td>Atmos. Horiz. res.</td>
<td>Tl159 (≈120 km)</td>
<td>←</td>
</tr>
<tr>
<td>Atmos. Vert. res.</td>
<td>L48, Top=0.01hPa</td>
<td>L80, 41 (>100hPa), 39 (<100hPa) Top=0.01hPa</td>
</tr>
<tr>
<td>Ocean Horiz. res.</td>
<td>1° × 0.5° (Tripolar grid)</td>
<td>←</td>
</tr>
<tr>
<td>Ocean Vert. res.</td>
<td>L51</td>
<td>←</td>
</tr>
<tr>
<td>Atmos. chem.</td>
<td>Aerosols (MRI-CGCM3) All (MRI-ESM1)</td>
<td>All (tropo. & storato., incl. volc. aer.)</td>
</tr>
<tr>
<td>Biogeochem.</td>
<td>Yes (MRI-ESM1)</td>
<td>Yes (depends on the experiment)</td>
</tr>
</tbody>
</table>

Many improvements
- **Stratospheric QBO**
 - Increased vertical layers and introduction of non-orographic GWD (Hines-scheme)
- **Low clouds**
 - CTE-EIS stratocumulus parameterization, vertical layers, cloud physics, etc.
- **Asian summer monsoon**
- **Sea ice distribution in the winter North Atlantic**
Stratospheric QBO in MRI-ESM1.x

ERA-Interim

MRI-ESM1 CMIP5 esmHistorical

MRI-ESM1.x Test

Zonal Wind at the Eq.
N.H. Sea Ice Distribution

CMIP5 historical (1979-2005)

MRI-ESM1.x Test (1987-1996)
High-resolution time-slice experiments by MRI-AGCM

Study of Future Change in Extreme Events
- Tropical Cyclones (e.g. Murakami et al. 2012) → less number, more intense
- East Asia Monsoon (e.g. Kusunoki et al. 2006) → seasonal migration delayed
- Extreme Rainfall (e.g. Kamiguchi et al. 2006) → more frequent
- Blockings (e.g. Matsueda et al. 2009) → less frequent
- Extratropical Cyclones (e.g. Mizuta et al. 2011)

Impact Assessments
- Disasters
- Agriculture
- Water Resources

Regional Climate Change
- Outputs provided to researchers of each region
 (Korea, China, Taiwan, Philippines, Thailand, Indonesia, Viet Nam, Bangladesh, India, Israel, Saudi Arabia, Senegal, Spain, Netherland, UK, Ireland, Denmark, Switzerland, Germany, USA, Mexico, Columbia, Barbados, Belize, Bolivia, Peru, Ecuador, Brazil, Argentina, Australia, Papua New Guinea)
Setup of time-slice experiments

- Present-day climate experiment (1979-2003): AMIP-type
 - observed SST and sea-ice concentration
 - observed global-mean concentrations of CO2 and other GHGs
- Future climate experiment (2075-2099)
 - SST warming in the CMIP coupled models is added to the obs. SST
 - changing concentrations of GHGs following the emission scenario

\[
\text{Observed SST} = \text{CGCM present} + \Delta T_{\text{CGCM future}} + \text{variability}
\]

\[
\text{SST for time-slice} = \text{obs} + \Delta T_{\text{CGCM future trend}} + \text{obs variability}
\]
Cluster analysis of ΔSST pattern of CMIP5 models

- Cluster analysis applied to normalized ΔSST of CMIP5 models
- The clustered ΔSST patterns can be used as the lower boundary change for AGCMs to study on what part of the climate change could depend solely on the pattern of the SST change.
MRI’s CMIP6 Plan

Models: MRI-ESM1.x, MRI-AGCM3.xS, (NHRCM)

Infrastructure:
 Fujitsu 1.2 Pflops at MRI (Mar. 2015~) approx. 25% for CMIP6

of years of experiments:
 20,000 years (MRI-ESM1.x)
 200 years (MRI-AGCM3.xS)

MIPs to contribute to:
 • Planning:
 AeroChemMIP, C4MIP, CFMIP, DAMIP, DCPP
 HighResMIP, OCMIP6, PMIP, VolMIP, (CORDEX)
 • Under consideration:
 GeoMIP, (GDDEX), GMMIP, LS3MIP
 ScenarioMIP
Backup Slides
Asian Summer Monsoon Precipitation

Precipitation JJA mean

CMAP (1987-1996)

CMIP5 esmHistorical (1987-1996)

MRI-ESM1.x Test (1987-1996)
Aerosol Optical Thickness (550 nm)

MRI-CGCM3 historical (1987-1996)

MRI-ESM1.x Test (1987-1996)

MODIS_L3_C5 (2001-2012)
Cluster analysis of ΔSST pattern of CMIP5 models

• 28 CMIP5 models, of which historical +RCP2.6/4.5/8.5 results are available, are used.

• In addition to the average of all models, SST ensemble experiments uses the average of 3 groups of the models.

• Cluster analysis is applied to the warming pattern of the models:

 (Endo et al., 2013, JGR; Murakami et al., 2012, Clim. Dyn.)

1. For each model, a mean SST change from the 1979-2003 mean to the 2075-2099 mean (RCP8.5) is computed.
2. The computed mean SST change is normalized by the tropical mean (30°S–30°N) SST change.
3. Multi-model ensemble mean of the normalized value is subtracted from that for each model.
4. Norms (or distances) between the models are defined as $2 \times (1 - r)$, using inter-model pattern correlation r.
5. The cluster analysis is applied using these norms.
6. When the final three groups are bounded, the clustering procedure is terminated.
CMIP5 normalized SST change (RCP8.5 - historical)
Cluster analysis results

Cluster I

Cluster II

Cluster III