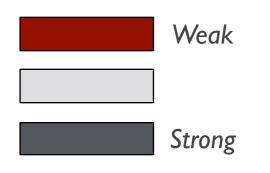

Proposed contributions to CMIP6 with a response to forcing emphasis

Bjorn Stevens (for the CMIP panel)

slide one of eleven

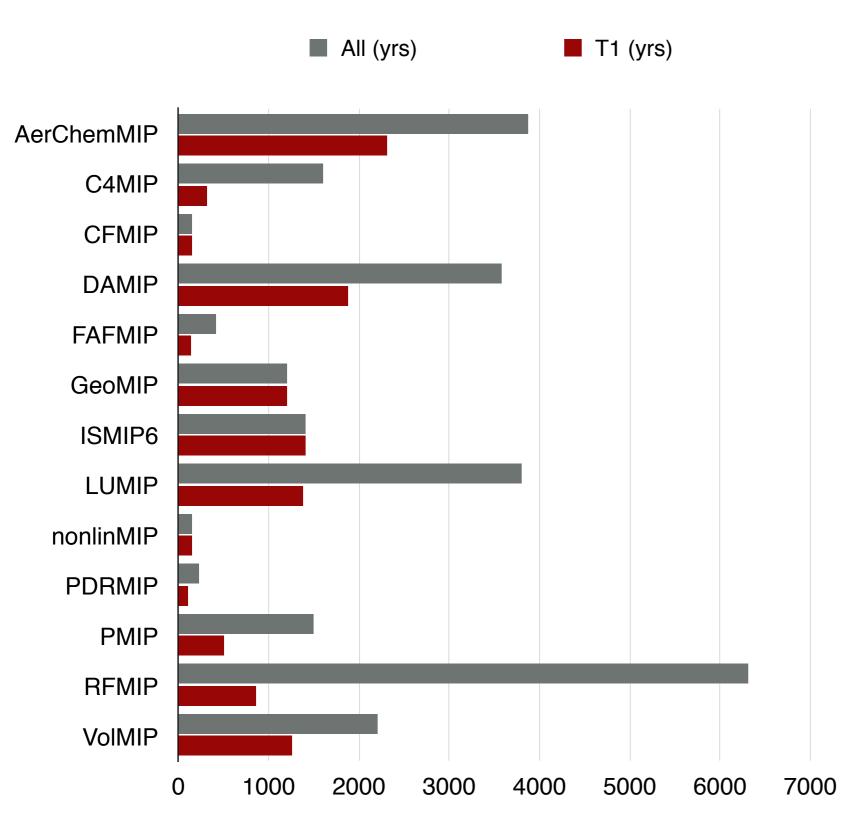
Overview*

- 12 MIPs
- 25000 years (11000 in T1)
- 310 experiments (174 in T1)

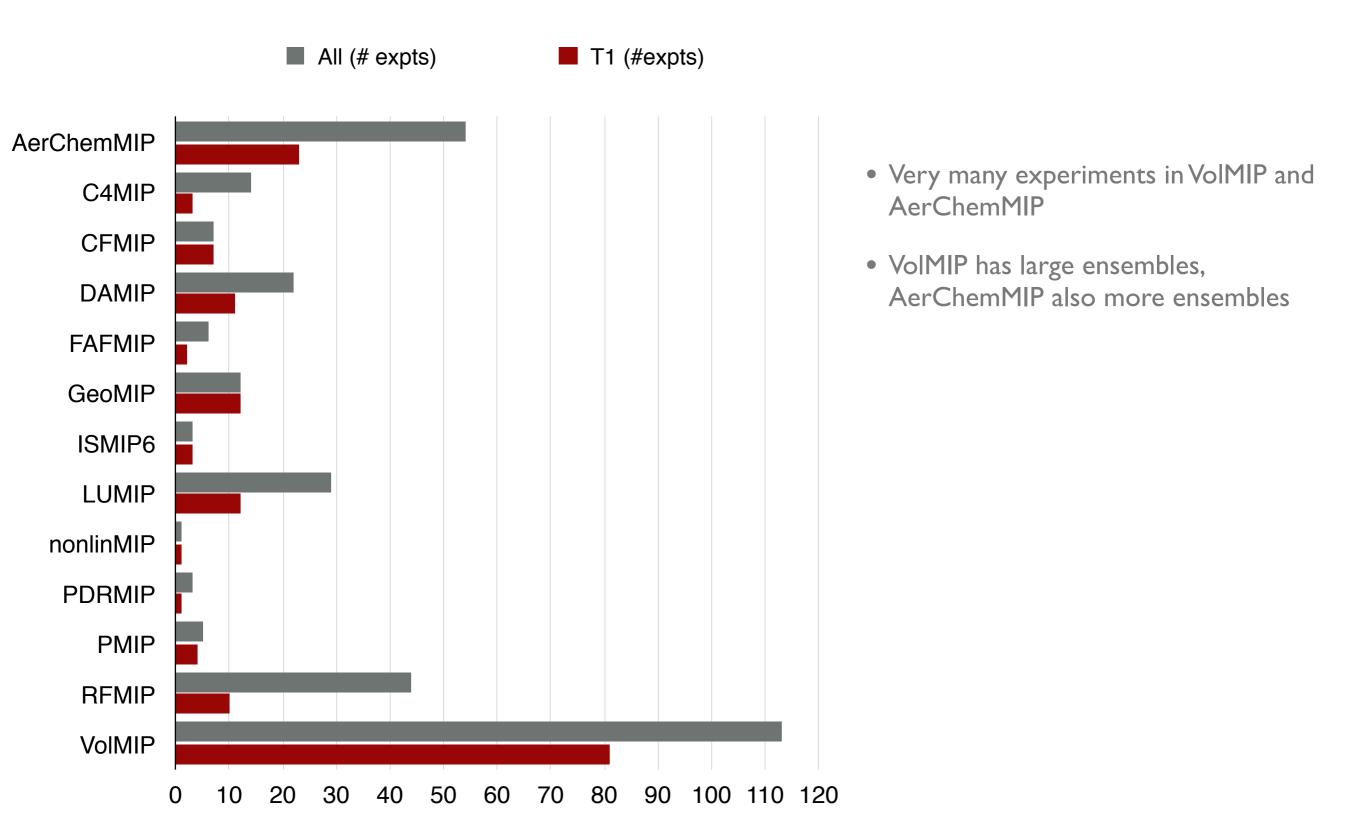

* Less discussion of GDDEX (12 expts, 1950 yrs, high resolution) but can based on interest.

- AerChemMIP (Aerosols and Chemistry MIP): Diagnose forcing and feedbacks of aerosols, ozone and methane; Document and understand past and [sic] future changes in the chemical composition of the atmosphere; provide fields for CMIP6 models.
- C4MIP (Coupled Carbon Climate Cycle)*: Understand and quantify future changes in land and ocean carbon storage and fluxes, quantify climate-carbon cycle feedbacks and Transient Climate Response to cumulative Emissions (TCRE).
- CFMIP (Cloud Feedbacks): Improve assessments of cloud feedbacks.
- DAMIP (Detection and Attribution): Facilitate Estimates of anthropogenic (GHG and nonGHG) and natural forcing.
- FAFMIP (Flux-Anomaly Forcing): Quantify differences in patterns of sea level change and ocean heat uptake.
- GeoMIP (Geo Engineering): Exploring options for mitigating against GHG warming.
- ISMIP (Ice Sheet MIP): Effect of major ice sheets on sea-level rise.
- LUMIP (Land Use Change): What are the effects of land-use change on climate and biogeochemical cycling?
- nonLinMIP (non-linear response): Quantify and understand non-linear climate responses.
- PMIP (PaleoMIP): Evaluate climate feedbacks using observations of pre-instrumental changes.
- PDRMIP (precipitation drivers): Compare precipitation response to various drivers (mostly aerosol).
- RFMIP (Radiative Forcing): Quantify and understand rad. forcing to which climate models are subject.
- VolMIP (Volcano): Assess robust responses to volcanic forcing.

*Tier 1 Simulation request corrected during course of WGCM meeting (9.10.2014)


Projection on Grand Science Challenges

	Short name	# yrs	Cld, Circ, CS	Cryosphere	Extremes	Regional Info	Sea-level Rise	H20 Avail	IGBP
1	AerChemMIP	2303	2	5	3	4	0	0	1
2	C4MIP	310	0	3	0	0	0	2	1
3	CFMIP	155	1	4	6	2	7	3	5
4	DAMIP	1800	4	3	2	1	6	5	7
6	FAFMIP	140	3	4	0	2	1	0	0
8	GeoMIP	1200	1	3	4	2	0	5	6
11	ISMIP	900		1		2	2	3	
14	LUMIP	1400	0	0	4	2	0	3	1
15	nonlinMIP	150	4	7	6	1	3	2	5
17	PDRMIP	1380	1	0	2	4	0	3	0
18	РМІР	300	2	3	5	4	6	7	1
19	RFMIP	180	1	7	4	2	5	6	3
22	VoIMIP	1260	1	4	5	3	6	7	2


The projection on the cryosphere and water availability grand science challenges is relatively weak. Link to IGBP has a different character, as there is no IGBP grand science challenge.

Requested Simulation Years

- C4MIP, LUMIP, RFMIP and PMIP show strong prioritization, modest prioritization in DAMIP, AerChemMIP and VolMIP.
- Large number of T1 years in AerChemMIP, DAMIP, DAMIP has a relatively simple experimental design.

Requested Simulations Numbers

Some MIPs are Easy

C4MIP, CFMIP, FAFMIP, PMIP, RFMIP, nonLinMIP:

- All have high-priority experiments with a clear and proven experimental design.
- All are strongly linked to modelling centers.
- All are asking for relatively little (together their Tier I request amounts to about 2000 years, and a total of 25 simulations). The other MIPs each request 1200 to 2300 years of high priority simulations, usually with more complex configurations and 149 additional simulations.
- Each is strongly linked to a grand challenge (covering four of six) and/or a CMIP6 science question.

relatively little interest has been expressed in FAFMIP and nonLinMIP, perhaps reconsider?

Question Mark

RFMIP

• Offline radiation calculations (and perhaps snapshot provision) could be labor intensive.

PDRMIP

• Could be easy, but description and experiments not well defined (positive recommendation based on faith)

COSP and tendency diagnostics in DECK

• this actually is simplified compared to last time, but not trivial.

Straightforward (but heavier)

ISMIP (1400 yrs), DAMIP (1800 yrs)

- relatively clear and proven experimental design.
- builds strongly on existing work.
- relatively small number of experiments (three different types in C4MIP, four in DAMIP)
- Benefits of having OCMIP, and deforestation LUMIP run separate from C4MIP?
- GDDEX also fits in this category

More Question Marks

VolMIP (1260 yrs)

- very large ensemble sizes (is the signal worth finding?).
- opportunities for synergy with GeoMIP, RFMIP, and AerChemMIP.
- some aspects of experimental design appear unproven.
- Quite interesting to SPARC, perhaps less overlap with grand challenges.

GeoMIP (1200 yrs)

- No prioritization; grand challenge overlap is weak (should ask the regional information GC).
- Becoming rather more elaborate, and the more elaborate simulations have a strong overlap with AerChemMIP and ScenarioMIP.
- Design is centered around old scenarios for many experiments.
- Could more be gained by very simple experiments (solar only, surface albedo only)?

AerChemMIP (2303 yrs)

- Heavy in every respect.
- Are we running before we can walk (i.e., the D&A component)?
- Overlap with scenarios, but also VolMIP, GeoMIP, RFMIP?
- Further prioritization useful?

LUMIP (1400 yrs)

- Some questions about experimental design (runs are new)
- Overlap with other MIPs?